Electrical Theory

Math Review

PJM State \& Member Training Dept.

Objectives

By the end of this presentation the Learner should be able to:

- Use the basics of trigonometry to calculate the different components of a right triangle
- Compute Per-Unit Quantities
- Identify the two components of Vectors

Right Triangle

Mathematics Review

- To be able to understand basic AC power concepts, a familiarization with the relationships between the angles and sides of a right triangle is essential
- A right triangle is defined as a triangle in which one of the three angles is equal to 90°

Mathematics Review

Mathematics Review

- Given the lengths of two sides of a right triangle, the third side can be determined using the Pythagorean Theorem

Hypotenuse $^{2}=$ Opposite $^{2}+$ Adjacent 2

Example:

A rope stretches from the top of one pole 50 feet high to the top of another pole 20 feet high, standing 16 feet away.

How long is the rope?

Example:

$$
\begin{aligned}
& \xrightarrow{\text { ~ }} \\
& h^{2}=a^{2}+o^{2} \\
& h^{2}=16^{2}+30^{2} \\
& h^{2}=256+900 \\
& h^{2}=1156 \\
& h=\sqrt{1156} \\
& h=34
\end{aligned}
$$

Mathematics Review

- Once the sides are known, the next step in solving the right triangle is to determine the two unknown angles of the right triangle
- All of the angles of any triangle always add up to 180°
- In solving a right triangle, the remaining two unknown angles must add up to 90°
- Basic trigonometric functions are needed to solve for the values of the unknown angles

Trigonometry

Mathematics Review

- The sine function is a periodic function in that it continually repeats itself

Mathematics Review

- In order to solve right triangles, it is necessary to know the value of the sine function between 0° and 90°
- Sine of either of the unknown angles of a right triangle is the ratio of the length of the opposite side to the length of the hypotenuse

SIN θ = Opposite Side / Hypotenuse

Mathematics Review

- Cosine function is a periodic function that is identical to the sine function except that it leads the sine function by 90°

Mathematics Review

- As an example, the cosine function at 0° is 1 whereas the sine function does not reach the value of 1 until 90°
- Cosine function of either of the unknown angles of a right triangle is the ratio of the length of the adjacent side to the length of the hypotenuse
$\cos \theta=$ Adjacent Side / Hypotenuse

Mathematics Review

- The tangent function of either of the unknown angles of a right triangle is the ratio of the length of the opposite side to the length of the adjacent side

TAN $\theta=$ Opposite Side / Adjacent Side

Mathematics Review

Example:

- Given: Side H = 5, Side A = 4
- Find: Side O, Angle θ and Angle α

Mathematics Review

- Find Side O: $H^{2}=A^{2}+O^{2}$

$$
\begin{aligned}
& 25=16+O^{2} \\
& 25-16=O^{2} \\
& \sqrt{25-16}=O \\
& O=\sqrt{9}=3
\end{aligned}
$$

- Find $\theta: \quad \cos \theta=\frac{A}{H}=\frac{4}{5}=.8$

$$
\cos ^{-1}(.8)=36.87^{\circ}
$$

- Find $\alpha: \quad 180^{\circ}-90^{\circ}-36.87^{\circ}=53.13^{\circ}$

Per-Unit Quantities

Mathematics Review

- Ratios play an important part in estimating power system performance
- Relationship between two quantities as a fraction
- Used when the relationship of two pairs of values is the same, and one of two similarly related values is known
- Example: if you can drive 120 miles in 2 hours, how many miles could you drive in 8 hours?

$$
\frac{120 \text { miles }}{2 \text { hours }}=\frac{X \text { miles }}{8 \text { hours }}=\frac{120 \text { miles }(8 \text { hours })}{2 \text { hours }}=\frac{X \text { miles }(8 \text { hours })}{8 \text { hours }}=480 \mathrm{miles}
$$

Mathematics Review

- Quantities on the power system are often specified as a percentage or a per-unit of their base or nominal value
- Makes it easier to see where a system value is in respect to its base value
- How it compares between different parts of the system with different base values
- Allow for a dispatcher to view the system and quickly obtain a feel for the voltage profile

Mathematics Review

- Assume that, at a certain substation, the voltage being measured is 510 kV on the 500 kV system. What is its per-unit value with respect to the nominal voltage?

Base or nominal voltage $=500 \mathrm{kV}$
Measured voltage $=510 \mathrm{kV}$
$510 \mathrm{kV} / 500 \mathrm{kV}=\underline{1.02}$ per-unit or 102%

Mathematics Review

Mathematics Review

$\frac{513.9 \mathrm{kV}}{500 \mathrm{kV}}=1.03$ per - unit

Answer Question 4 \& 5

Question 4

- Assume that the loss of a 1000 MW generating unit will typically result in a 0.2 Hz dip in system frequency
- Estimate the frequency dip for the loss of an 800 MW generating unit

Question

- Assume that the loss of a 500 MW generating unit will typically result in a 0.3 Hz dip in system frequency.
- Estimate the frequency dip for the loss of an 300 MW generating unit.
, 1 pjim

Vectors

Vectors

- A vector is alternative way to represent a sinusoidal function with amplitude, and phase information
- Vectors are usually written in bold with an arrow over the top of the letter, (\vec{A})
- A vector's length represents magnitude
- A vector's direction represents the phase angle
- Example: 10 miles east

Vectors

- Horizontal line to the right is positive; horizontal line to the left is negative
- Vertical line going up is positive; vertical line going down is negative
- Arrowhead on the end away from the point of origin indicates the direction of the vector and is called the displacement vector
- Vectors can go in any direction in space

Vectors

- The difference between a scalar quantity and a vector:
a) A scalar quantity is one that can be described with a single number, including any units, giving its size or magnitude
b) A vector quantity is one that deals inherently with both magnitude and direction

Conceptual Question 6

- There are places where the temperature is $+20^{\circ} \mathrm{C}$ at one time of the year and $-20^{\circ} \mathrm{C}$ at another time.
- Do the plus and minus signs that signify positive and negative temperatures imply that temperature is a vector quantity?

Question 7

Which of the following statements, if any, involves a vector?
a) I walked two miles along the beach
b) I walked two miles due north along the beach
c) A ball fell off a cliff and hit the water traveling at 17 miles per hour
d) A ball fell off a cliff and traveled straight down 200 feet
e) My bank account shows a negative balance of - 25 dollars

Vectors

- When adding vectors, the process must take into account both the magnitude and direction of the vectors
- When adding two vectors, there is always a resultant vector, R, and the addition is written as follows:

$$
\vec{R}=\vec{A}+\vec{B}
$$

Vectors

Example: Adding vectors in the same direction

- Vector \vec{A} has a length of 2 and a direction of 90°
- Vector \vec{B} has a length of 3 and a direction of 90°

Vectors

Example: Adding vectors in the opposite direction

- Vector \vec{A} has a length of 2 and a direction of 90°
- Vector \vec{B} has a length of 3 and a direction of 270°

Vectors

- Subtraction of one vector from another is carried out in a way that depends on the following:

When a vector is multiplied by -1 , the magnitude of the vector remains the same, but the direction of the vector is reversed

- Vector subtraction is carried out exactly like vector addition except that one of the vectors added is multiplied by the scalar factor of -1

Vectors

Vectors

- If the magnitude and direction of a vector is known, it is possible to find the components of the vector
- The process is called "resolving the vector into its components"
- If the vector components are perpendicular and form a right triangle, the process can be carried out with the aid of trigonometry

Vectors

- To calculate the sum of two or more vectors using their components (x and y) in the vertical and horizontal directions, trigonometry is used

Vectors

- The Pythagorean Theorem is a special relationship that exists in any triangle and describes the relationship between the lengths of the sides of a right triangle

$$
z^{2}=x^{2}+y^{2}
$$

- Three basic trigonometric functions defined by a right triangle are:

$$
\begin{gathered}
\sin \theta=y / z=\text { opposite side/hypotenuse } \\
\cos \theta=x / z=\text { adjacent side/hypotenuse } \\
\tan \theta=y / x=\text { opposite side/adjacent side } \\
\tan \theta=\sin \theta / \cos \theta
\end{gathered}
$$

Vectors

- To find theta, the inverse of the trigonometric function must be used

$$
\begin{aligned}
& \theta=\sin ^{-1} y / z \\
& \theta=\cos ^{-1} x / z \\
& \theta=\tan ^{-1} y / x
\end{aligned}
$$

- When adding vectors, magnitude is found by:

$$
\vec{R}=\sqrt{\left(\overrightarrow{R_{x}}\right)^{2}+\left(\overrightarrow{R_{y}}\right)^{2}}
$$

- The direction of the resultant, R, is found by:

$$
\theta=\sin ^{-1}\left(R_{y} / R\right)
$$

Vectors

- Vectors can be added either in the same direction or in opposite directions

Vectors

Adding vectors:

Vectors

Vectors

Vectors

Determine the resulting vectors, R_{x} and R_{y} :

$$
\begin{aligned}
& \overrightarrow{R_{X}}=\overrightarrow{A_{X}}+\overrightarrow{B_{X}} \\
& \overrightarrow{R_{X}}=7.07+12.99 \\
& \overrightarrow{R_{X}}=20.06 \\
& \overrightarrow{R_{y}}=\overrightarrow{A_{y}}+\overrightarrow{B_{y}} \\
& \overrightarrow{R_{y}}=7.07+7.5 \\
& \overrightarrow{R_{y}}=14.57
\end{aligned}
$$

Vectors

$$
\begin{aligned}
& \vec{R}=\sqrt{\overrightarrow{R_{x}^{2}+R_{y}^{2}}} \\
& \vec{R}=\sqrt{20.06^{2}+14.57^{2}} \\
& \vec{R}=\sqrt{614.7} \\
& \vec{R}=24.79 \\
& \theta=\sin ^{-1}\left(\frac{R_{y}}{R}\right) \\
& \theta=\sin ^{-1}\left(\frac{14.57}{24.79}\right) \\
& \theta=\sin ^{-1}(.587) \\
& \theta=35.9^{\circ}
\end{aligned}
$$

Vectors

- Polar notation expresses a vector in terms of both a magnitude and a direction, such as:

$$
\begin{aligned}
& \mathbf{M} \angle 0 \\
& \text { where: }
\end{aligned}
$$

\mathbf{M} is the magnitude of the vector
0 is the direction in degrees

Example:

Vector with a magnitude of 10 and a direction of -40 degrees $10 \angle-40^{\circ}$

Vectors

- Multiplication in polar notation:

Multiply the magnitudes/add the angles

$$
\left(50 \angle 25^{\circ}\right)+\left(25 \angle 30^{\circ}\right)=1250 \angle 55^{\circ}
$$

- Division in polar notation:

Divide the magnitudes/subtract the angles

$$
\frac{\left(50 \angle 25^{\circ}\right)}{\left(25 \angle 30^{\circ}\right)}=2 \angle-5^{\circ}
$$

Questions?

PJM Client Management \& Services
 Telephone: (610) 666-8980
 Toll Free Telephone: (866) 400-8980
 Website: www.pim.com
 Member?
 \because Community

The Member Community is PJM's self-service portal for members to search for answers to their questions or to track and/or open cases with

Client Management \& Services

