

PPL Asset Management

PJM TRPSTF May 23rd, 2016

PPL Electric Utilities

PPL Examples of Asset Management

- Transmission Line Reliability Analysis Tool
- Cellon Wood Poles
- SF6 Gas Circuit Breakers Mortality Analysis
- CCVT Mortality Analysis

PPL Transmission System Highlights

- 500kv, 230kV, 138kV and 69kV
- 1.4M Customers fed from 138kV and 69kV Lines
- 69kV and 138kV lines "Designed for Network, Operated Radially"
- Aging Infrastructure lines constructed as early as 1910's
- About half of the ~50,000 Transmission Structures are Wood Poles

Typical PPL 69kV Topology

These switches facing the line protection breaker from the first tap is meant to sectionalize the line and re-energize all subs from the remote end in the case of a double circuit failure in the first section of a line. This situation is dependent on line loading and relaying capabilities.

Transmission Line Reliability Analysis Tool

- Proprietary Asset Management Tool that *supports* a reliability focused, cost effective and well coordinated asset investment and condition-based maintenance program
- Dynamic Asset Health, Criticality and Risk Scores along with predictive SAIFI and MAIFI measurements
- Risk scores and probability of failure should be scalable from component level up to system level
- Condition-based maintenance algorithms to trigger alerts and warnings and to initiate work orders
- System-wide Asset Inventory to capture relevant information
- Digitizing of inspection forms and trouble reports to feed field data directly into Asset Database

Use Cases for Transmission Line Tool:

- Maintenance condition-based inspections and maintenance
- Rehabilitate versus Rebuild better understand impact and analysis around decision
- Project Prioritization compare lines based on overall Risk (Health, Criticality, and Performance)
- Reliability Improvements understand performance impact when addressing known reliability issues
- Asset Optimization optimize line performance through component-level analysis
- Transmission Operations provide information to make operational decisions based on Risk
- Life-cycle management ability to project health of line into the future

Risk Matrix

Risk = Criticality x Health (Severity x Probability)

Example: Line A = B3Line B = C1

Transmission Line Reliability Analysis Tool Structure

Inputs

- Assessment is based on 3 key areas: Performance, Asset Health, and Criticality
- Assessment is completed at the component, structure and line level to provide an aggregate score at the Line, Region or System level
- MicroStrategy reporting interface is used to analyze the asset data
- Standard Reporting Capabilities:
 - Projected MAIFI & SAIFI Performance
 - Current Health & Criticality
 - Risk Score (Rating)
- Scenario Forecast Reporting Capabilities:
 - Future Status (aged assets)
 - Idealized Status (rebuilt/replaced assets)

• Performance (MAIFI & SAIFI)

- Baseline uses MAIFI/SAIFI impact per outage event (customer dependent)
- Probability of Failure (Momentary & Permanent)
 - Evaluated at the structure level and compiled at the line level
 - Factors in historical outage history and performance
 - Asset specific attributes positively/negatively impact Pf
- Projected MAIFI & SAIFI is a function of Pf and MAIFI/SAIFI per event

Asset Health

- Baseline score is based on the aggregate of all the structures on the line
- Health score is calculated using modeled life curves
- Additional attributes are weighted against the health score for various attributes that impact structures positively/negatively

Criticality Score

- Based on various factors specific to the transmission line
 - Topology (Voltage Class, Single Circuit, Double Circuit, etc.)
 - Loading (Average, Peak)
 - Operability (switches, transfer capability, etc.)
 - Critical Customers

Assessment Methodology for T-Line Assets

- Utilize Condition Parameters (CP) and Weights (W) assigned to given assets for both permanent and momentary impacts
- All attributes specific to a structure are weighted against the health and projected MAIFI & SAIFI metrics
- Common Attributes
 - Structure Material
 - Structure Type & Configuration
 - Cross Arms
 - Guying
 - Type & Level of Insulation
 - Environmental (Wooded, Fields, Mountainous, Wetland, etc.)
 - Crossing (Line, River, Structure, etc.)
 - Underbuilt Assets

T & S Transmission Lines Reliability System Overview

Total System

	Proje	cted Impact		
Customers	SAIFI (Total)	MAIFI (Total)	Health (Avg)	Criticality (Avg)
1,396,372	0.04105	0.33539	84%	2

			Projected Impact					
T Line	Region	Customers	SAIFI	MAIFI	Health	Criticality	Rating	•
	Central	5,176	0.00024	0.00024	85%	2	2A	1
	Central	9,506	0.00003	0.00003	85%	2	2A	
	Central	9,253	0.00068	0.00267	85%	2	2A	
	Lehigh	16,811	0.00002	0.01481	86%	3	3A	
	Central	4,376	0.00064	0.00659	82%	2	2B	
	Central	3,259	0.00047	0.00491	85%	1	1A	
	Central	7,266	0.00027	0.00612	84%	2	2B	
	Central	13,712	0.00090	0.00971	85%	2	2A	
	Susquehanna	0	0.00000	0.00000	82%	2	2B	
	Central	6,143	0.00073	0.02387	85%	2	2A	
	Central	4,157	0.00001	0.00001	81%	2	2B	~

*Click on the T-Line/Region to view the T-Line overview/Region Overview

Click here to return to Main Menu

SAIFI	MAIFI
0 - 0.005	0 - 0.05
> 0.005 - 0.05	> 0.05 - 0.1
> 0.05 - 0.3	> 0.1 - 0.5
> 0.3	> 0.5

Criticality				
1	Low			
2	Med - Low			
3	Med - High			
4	High			

Health				
A (Very Good)	HI > 85 %			
B (Good)	70 <= HI < 85 %			
C (Fair)	50 <= HI < 70 %			
D (Poor)	25 <= HI < 50 %			
F (Very Poor)	HI < 25 %			

T & S Transmission Lines Reliability

T-Line Overview

Total System Customers 1,396,372

Click here for Excel Export

			Project	ted Impact		
TLine	Customers	MAIFI/SAIFI (Per event)	SAIFI	MAIFI	Health	Criticality
	6,143	0.00440	0.000735	0.023869	83%	2
	5,047	0.00361	0.000733	0.023867	84%	
	0	0.00000	0.000000	0.000000	79%	
	1,096	0.00078	0.000002	0.000003	83%	
	0	0.00000	0.00000	0.00000	86%	

Click here to view the Detail Report

SAIFI	MAIFI
0 - 0.005	0 - 0.05
> 0.005 - 0.05	> 0.05 - 0.1
> 0.05 - 0.3	> 0.1 - 0.5
> 0.3	> 0.5

Criticality				
1	Low			
2	Med - Low			
3	Med - High			
4	High			

Health			
A (Very Good)	HI > 85 %		
B (Good)	70 <= HI < 85 %		
C (Fair)	50 <= HI < 70 %		
D (Poor)	25 <= HI < 50 %		
F (Very Poor)	HI < 25 %		

1 200 270	Line Name		Mileage	-
1,390,372	66		27.00	l
	81		4.00	l
6,143	77		0.00	l
	223		3.00	
0.00440	Total		34.00	~
	Line Name	Substation Name	Customer Count	-
0.000735	66		3 397	l
0.023869				
			1,650	l
83%		Total	5,047	l
0070	77		1,096	l
2			1,096	l
2	Total		6,143	~

T & S Transmission Lines Reliability

T-Line Detail

Click here for excel export

T-Line	Customers	MAIFI/SAIFI	SAIFI	MAIFI	Health	Criticality
	6,143	0.00440	0.000735	0.023869	83%	2
	5,047	0.00361	0.000733	0.023867	84%	
	0	0.00000	0.000000	0.000000	79%	
	1,096	0.00078	0.000002	0.000003	83%	
	0	0.00000	0.000000	0.000000	86%	

System Total

MAIFI/SAIFI (Per event)

SAIFI (Contribution)

MAIFI (Contribution)

Line Total

Health

Criticality

As of 02-Feb-2016 : 2:37:12 PM

-----OUTAGE------

Outage History					
Failure Type					
Year	Momentary	Permanent			
2007	12	0			
2008	3	0			
2009	15	0			
2010	4	1			
2011	8	1			
2012	4	0			
2013	13	0			
2014	4	0			
2015	3	0			
2016	0	0			

In-Service Year 2007

Historical Momentary Outage Interruption Event Contributors

		Projec	cted
History	Total Outages	Pf (Mom)	MAIFI
10	66	6.60	0.02904

Historical Permanent Outage Interruption Event Contributors

		Projected			
History	Total Outages	Pf (Perm)	SAIFI		
10	2	0.20	0.00088		

T-Line Section	Grid	Seq #	Health Index	Pf (Perm)	Pf (Mom)	Perm Structure Type CP	Perm Structure Type Pf	Perm Structure Type W	Perm Structure Material CP	Perm Structure Material Pf	Perm Structure Material W	Perm Structur Configuration CP
MAIN LINE		NA	84%	0.00333	0.00400	0.70	0.005	2.00	1.00	0	3.00	3.0

PPL Examples of Asset Management

- Transmission Line Reliability Analysis Tool
- Cellon Wood Poles
- SF6 Gas Circuit Breakers Mortality Analysis
- CCVT Mortality Analysis

Cellon Wood Poles

Cellon Wood Pole Highlights

- 2010 1st Failure of Cellon Wood Pole
- Root Cause Analysis identified correlation between Cellon-treated Douglas Fir Wood with high probability for excessive internal decay
- "Rotted" poles are structurally compromised and at risk of failure
- Failure is a risk to public Safety and Reliability
- Wood Pole inspections are ineffective at identifying "rotted" poles
- Cellon Pole Program developed to systematically replace at-risk poles on the system with Steel
- Targeted high Criticality lines, Critical crossings, Roadways and public locations first
- Condition Parameters in Transmission Line Reliability Analysis Tool reflect the poor condition of these structure types
- Over 2/3 of Cellons replaced since 2010

Cellon Wood Poles

Cellon Wood Poles

PPL Examples of Asset Management

- Transmission Line Reliability Analysis Tool
- Cellon Wood Poles
- SF6 Gas Circuit Breakers Mortality Analysis
- CCVT Mortality Analysis

Reliability "Bathtub" Curve

SF6 Circuit Breakers – Mortality Analysis

Situation

- SF6 Breaker failures are increasing 33% year over year
- SF6 breakers leak and alarm • creating emergency work
- · Breakers are repeatedly filled unplanned
- Breakers are repaired after several alarms

Findings

- Model and vintage drives survival rate
- Repairing breaker mitigates issue for ~12 months
- Once a breaker begins to leak it will repeatedly leak more often
- Cost/Benefit Analysis shows leaking breaker should be planned for replacement in lieu of repeated repairs

Expected Survival Rate (Vendor A)

Results

- **46** SF6 breakers added to Capital Replacement Plan over 5 years
- Proactive replacement will reduce maintenance costs on SF6 fills. leak repairs and alarm call-outs
- Less SF6 will be lost to the • environment
- Less unplanned line outages for SF6 fills/leaks will occur

PPL Examples of Asset Management

- Transmission Line Reliability Analysis Tool
- Cellon Wood Poles
- SF6 Gas Circuit Breakers Mortality Analysis
- CCVT Mortality Analysis

- Develop a statistical model for Time-to-Failure maintenance data
- Forecast expected CCVT Failures and Replacements
- Reduce Doble-testing (currently every 4 years)
- Optimize O&M Spending
- Improve Reliability Performance of the Fleet
- Ensure Safe Operation of CCVT Fleet (no catastrophic failures)

- Statistical model proved life expectancy based on Test Criteria
- Learning from statistical models can help shape the Testing program
- Risk is measured as a function of Survival Probability

Bigger Reliability drop expected for Vendor X and Y Behavior due to faster mean-time-to-failure as compared with other OEMs

- Plan asset replacement at recommended age to minimize risk of failure and reduce maintenance costs of future Doble-testing
- Manage risk based on Failure probability model

Revise CCVT Replacement program to reduce operating Cost and improve Reliability of System.

Recommended Test and Replacement Program

	First Test Criteria	Continuous Testing	Replacement Age
Manufacturer	(years)	(years)	(Years)
Vendor A	16	8	30
Vendor B	14	8	30
Vendor C	5	6	20
Vendor D	24	8	44
Vendor E	19	8	42
Vendor F	14	8	30
Vendor G	14	8	30
Vendor H	24	6	30
Vendor I	14	8	30

- Findings based on over 20 years of Doble-Testing, Failure and Maintenance Data
- Identified several high risk CCVTs that required immediate Doble testing
- Implemented reduced testing cycles for future tests
- Developed revised Capital Replacement program based on results

Testing Program can be significantly reduced by implementing a Conditionbased program vs. a Time-based 4 year cycle

