

Illustrative Examples of Reactive Capability (D-Curves) and Corresponding Compensation under Packages G and E

Darrell Frogg Generation Department Reactive Power Compensation Task Force November 29, 2022

Summary of Package E Compensation Metric

Flat rate: a generator's revenue is MVAR_Capability*Rate

• For illustration, assume Rate is \$1,000/MVAR-yr (hypothetically).

A generator's **D-curve** shows the maximum reactive capability (both injecting & withdrawing VARs, or "Q") as a function of real power (i.e., MW or "P") output.

 In general, machine designs mean more MW output means less MVAR capability.

MVAR_Capability_E is [average of Q1 and Q2] minus [average of Q3 and Q4]. This basically amounts to: *injecting capability (averaged at Pmax and Pmin) plus withdrawing capability (averaged at Pmax and Pmin).*

- VAR withdrawal is negative Q, hence the "minus".
- Pmin is the lowest power the generator is capable of making while online (not less than zero).
- *Pmax is Maximum Facility Output or the functional equivalent.*

Summary of Package G Compensation Metric

Flat rate: a generator's revenue is MVAR_Capability*Rate

• For illustration, assume Rate is \$1,000/MVAR-yr (hypothetically).

Package G would use precisely the same reactive rate as Package, without adjustment.

MVAR_Capability_G is [average of Q1-Q1_o and Q2-Q2_o] minus [average of Q3-Q3_o and Q4-Q4_o].

 Q_o is the "standard obligation" = 0.95 lead/lag power factor at high side. This amounts to:

injecting capability above obligation (averaged at Pmax and Pmin) --plus-withdrawing capability above obligation (averaged at Pmax and Pmin).

• VAR withdrawal is negative Q, hence the "minus".

Package G-PJM-Capability Above Standard Obligation

- Same as Package E during transition period.
- After transition period, same as Package E, except compensates only capability above standard obligation (i.e., above 0.95 lead/lag power factor).

- Transition period is:
 - Option I: 5 years
 - Option II: after 90% of existing Schedule
 2 filed rates have rolled off (e.g., only 29 or fewer remain)

"pjm"

Calculating Standard Obligated Capability For Package G

- P is real power, Q is reactive power, S is "apparent power"
- Obligation is 0.95 Power Factor
- Power factor is defined as $P/S = 0.95 \rightarrow S = P/0.95$
- Power systems engineering says: $S^2 = P^2 + Q^2 \rightarrow Q = \sqrt{S^2 P^2} \rightarrow$

•
$$Q = \sqrt{\left(\frac{P}{0.95}\right)^2 - P^2} = \left(\sqrt{\left(\frac{1}{0.95}\right)^2 - 1}\right) \times P = \Rightarrow$$

Obligation: Q is 32.87% of P

• Example: obligated reactive capability at 100 MW is 32.87 MVAR (leading and lagging)

Comparative Summary of Compensation Examples (Details for Each Example on Following Slides)

	Package E	Package G
Steam	\$81,500	\$32,500
СТ	\$76,500	\$17,500
CT w/ Condensing Mode	\$81,500	\$48,500
Solar	\$78,000	\$45,000
Solar w/ Condensing Mode	\$78,000	\$45,000
Battery	\$133,000	\$100,000
DC-Coupled Hybrid	\$78,000	\$45,000
New Tech Wind	\$78,000	\$45,000
Old Tech Wind	\$66,000	\$33,000
Old Tech Wind Fixed PF	\$33,000	\$0

Package G ("Pay Capability in Excess of Standard Obligation") Examples

Illustrative Example of a 100 MW Steam Generator

Illustrative Example of a 100 MW Combustion Turbine

w/ Condensing Mode

G

Illustrative Example of Old-Technology Wind Plants

- Old tech with full capability fixed at +/-33 MVAR regardless of power:
 - 0 excess at Pmax, 33 MVAR excess lead and lag at Pmin → \$33,000

- Old tech with controller set to only provide 0.95 lead/lag capability:
 - 0 excess capability above obligation \rightarrow \$0

Package E ("Pay Full Capability") Examples (Same As Prior Meeting)

Illustrative Example of a 100 MW Steam Generator

- VAR injection capability:
 - Q1 at Pmax (100 MW) = 40 MVAR
 - Q2 at Pmin (50 MW) = 50 MVAR
- VAR withdrawal capability:
 - Q3 at Pmax = -33 MVAR
 - Q4 at Pmin = -40 MVAR
- Average(**40,50**) Average(**-33,-40**) = 81.5
- Compensation = \$1,000*81.5 = <u>\$81,500/yr</u>

Typical interconnection agreements require a minimum reactive capability that amounts to roughly 1/3d of MFO. In theory, the "nose" of the D-curve is typically not available.

Synchronous machine designs generally have lower VAR withdrawal capability than injection capability.

- Q1 at Pmax (100 MW) = 40 MVAR
- Q2 at Pmin (80 MW) = 45 MVAR
- VAR withdrawal capability:
 - Q3 at Pmax = -33 MVAR
 - Q4 at Pmin = -35 MVAR
- Average(40,45) Average(-33,-35) = 76.5
- Compensation = \$1,000*76.5 = <u>\$76,500/yr</u>

A CT might have a narrower dispatchable range than a steam generator, which might reduce the reactive capability available to PJM.

Illustrative Example of a Combustion Turbine

A synchronous machine generator with "condensing mode" can operate at 0 MW.

- VAR injection capability:
 - Q1 = <mark>40</mark> MVAR
 - Q2 =**50**MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -40 MVAR
- Average(40,50) Average(-33,-40) = 81.5
- Compensation = \$1,000*81.5 = <u>\$81,500/yr</u>

Illustrative Example of a Solar Plant

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = 45 MVAR
- VAR withdrawal capability: ٠
 - Q3 = -33 MVAR
 - Q4 = -45 MVAR
- Average(33,45) Average (-33,-45) = 78 ullet
- Compensation = \$1,000*78 = **\$78,000/yr** •

Inverter reactive capability matches power capability (they have a circular D-curve at the inverter terminals), however high impedance between PJM and large solar farm inverters reduces the reactive capability.

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = 45 MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -45 MVAR
- Average(33,45) Average (-33,-45) = 78
- Compensation = \$1,000*78 = <u>\$78,000/yr</u>

Reactive capability at 0 MW at night might be lower than capability at 0 MW during the day (i.e., when dispatched to 0 MW). Therefore, no change vs. previous example.

Illustrative Example of a Solar Plant w/ Reactive at Night Capability

Hypothetical rate of \$1,000/MVAR-yr

19

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = <mark>100</mark> MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -100 MVAR
- Average(33,100) Average (-33,-100) = 133
- Compensation = \$1,000*133 = <u>\$133,000/yr</u>

Battery inverters would be located close to the POI, with little impedance to PJM. The full circular inverter capability is therefore available to PJM.

Illustrative Example of a Battery

- Illustrative Example of a Solar-Battery Hybrid (Shared Inverters)
- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = <mark>45</mark> MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -45 MVAR
- Average(33,45) Average (-33,-45) = 78
- Compensation = \$1,000*78 = <u>\$78,000/yr</u>

This hypothetical solar-battery hybrid uses the solar inverters to operate the batteries. It is the same as the standalone solar example, except also has charging MW.

Illustrative Example of New-Technology Wind Plant

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = 45 MVAR
- VAR withdrawal capability: ٠
 - Q3 = -33 MVAR
 - Q4 = -45 MVAR
- Average(33,45) Average (-33,-45) = 78 ullet
- Compensation = \$1,000*78 = **<u>\$78,000/yr</u>** ۲

New wind generator technology is fully inverterbased, similar to solar. This result is the same as the solar example.

Illustrative Example of Old-Technology Wind Plant

w/ Full Reactive Capability at All Times

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = 33 MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -33 MVAR
- Average(33,33) Average (-33,-33) = 66
- Compensation = \$1,000*66 = <u>\$66,000/yr</u>

Old wind generator technology is only partly inverter based. They don't use the generators for reactive, instead using dedicated equipment that doesn't vary with power output..

Illustrative Example of Old-Technology Wind Plant w/ Fixed Power Factor Control Only as-per ISA

- VAR injection capability:
 - Q1 = 33 MVAR
 - Q2 = **0** MVAR
- VAR withdrawal capability:
 - Q3 = -33 MVAR
 - Q4 = -0 MVAR
- Average(**33**,**0**) Average (**-33**,**-0**) = 33
- Compensation = \$1,000*33 = <u>\$33,000/yr</u>

This example's dedicated VAR equipment was programmed to only provide reactive capability required by the ISA, which is a fixed power factor that drops with lower MW. This is consistent with the ISA power factor obligation, but does not provide the full capability of the equipment.

