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• Update on PJM’s conceptual design for capacity market reforms
– Initial perspectives on high-level design presented at the August 31, 2022 

RASTF meeting (slides)

Today’s Presentation

Note on Winter Storm Elliot: 
• In the early stages of analyzing the recent events and performance during the 

winter storm, which is and will be an important consideration in our 
discussions on market design at the RASTF

https://www.pjm.com/-/media/committees-groups/task-forces/rastf/2022/20220831/item-04---perspectives-on-high-level-design-concepts---pjm.ashx
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Reliability: Supports procurement of sufficient capacity to meet our 
resource adequacy targets

Efficiency: Embraces competitive principles, and provides transparent 
price signals for efficient entry and exit of resources
• Facilitates competitive, least-cost procurement of resources

Conceptual design focused on enhancements to better achieve these two 
primary objectives

Key Market Design Objectives
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Product Definition

Product Definition:
• A commitment to perform when needed by PJM, particularly during times of stressed system 

conditions (times of resource adequacy need or load shed risk), subject to penalties for non-
performance or bonus credits for over-performance

• Must be physical (existing or meeting criteria for a planned resource) and deliverable to load

• Measured and accredited in UCAP MW, which captures a resource’s expected performance during 
times of load shed risk and its incremental contribution to resource adequacy on the system (relative to 
that of a perfect generator)

• Substitutable, where 1 MW of UCAP can be exchanged for any other MW of UCAP on the margin 
while maintaining equivalent resource adequacy for a given metric, including across resource types with 
disparate operating characteristics and limitations

PJM’s conceptual design retains focus of the capacity market and product on 
resource adequacy & ensuring sufficient resources to meet loss-of-load criteria
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Reliability Risk Modeling
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Reliability Risks in the Capacity Market

Enhance our reliability risk modeling, especially that of winter risks:
• Enhance risk modeling by explicitly modeling how forced outage rates vary with temperature (increasing 

in extreme cold)
• Expand weather history in reliability modeling to more years (e.g. 50 years) than we do today to capture 

more extreme summer and winter weather distribution “tails” in history
• Both enhancements result in models that better captures extreme event risk, so they receive higher 

importance in setting procurement target and in accreditation

Other model enhancements:
• Load forecast improvements, including move to hourly forecast
• Move to hourly models for RTO and LDA reserve studies (improve modeling of locational needs)

Improve how we capture reliability risks in our modeling, and how we allocate 
risks in the market
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Reliability Risks - Data / Analyses

Thermal forced outages in period 2012-
2021 (excluding retired units) 

Historical Coldest Days Per 
Year in PJM (up through 2021)
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Reliability Risks - Data / Analyses (cont’d)

Fuel Security Analysis at “1 in 10” UCAP Reserves (RASTF presentation)
Simulated the performance of a portfolio that just meets the 1 in 10 LOLE criterion under extreme 
cold weather conditions. 

• Resource unavailability in analysis was based on weather (incl. fuel) related forced outages for thermal units and 
wind/solar hourly profiles seen in recent cold snaps

Historical Cold Snaps (many falling in 70s / 80s) Key Results
• 7 cold snaps show Conditional LOLE > 0
• Cold snaps with most risk:

– Winter 84/85: 
Conditional LOLE 1.81 days/winter, 
Conditional LOLH 8.6 hours/winter, 
Conditional EUE: 41,228 MWh/winter

– Winter 81/82:
Conditional LOLE 1.26 days/winter, 
Conditional LOLH 5.5 hours/winter, 
Conditional EUE: 19,298 MWh/winter

https://www.pjm.com/-/media/committees-groups/task-forces/rastf/2022/20220204/20220204-item-04a-2021-fuel-security-analysis-at-1-in-10-ucap-reserves.ashx
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Reliability Risks - Data / Analyses (cont’d)

Winter Storm Elliot (MIC presentation)

https://pjm.com/-/media/committees-groups/committees/mic/2023/20230111/item-0x---winter-storm-elliott-overview.ashx
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Accounting/Allocation of Reliability Risks

• Under status quo design, 
certain generation-based 
reliability risk drivers are 
accounted for by increasing 
amount of capacity procured

• This yields equivalent reliability 
but does not align risk 
causation with risk allocation, 
misaligning compensation and 
incentives

Risks Source Accounting of Risk
Load Uncertainty Demand Demand-side (FPR)
Random Thermal Forced Outages Supply (thermals) Accreditation (EFORd)
Variable Resource Risks Supply (e.g. wind/solar) Accreditation (ELCC)
Limited Duration Resource Risks Supply (e.g. battery) Accreditation (ELCC)
Thermal Winter Correlated Outages Supply (thermals) Demand-side (FPR)
Variability in Independent Thermal 
Forced Outages Supply (thermals) Demand-side (FPR)

Ambient De-rates (Summer) Supply (thermals) Demand-side (FPR)
Thermal Planned & Maint. Outages Supply (thermals) Demand-side (FPR)

Status quo accounting of generator reliability risks:

• We propose to instead de-rate 
those supply classes or 
resources introducing the risks
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Reliability Metric
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EUE as Primary Reliability Metric

• Better captures severity of events and relative importance or weighting across different 
tail-end event types & drives

Move to Expected Unserved Energy (EUE) as primary reliability metric to better align with 
experienced reliability, increasing weight placed on extreme (long & deep) load shed
• Set RTO target based on the “equivalent” EUE seen in our models today when at a 1-in-10 LOLE

• Since the relative weighting of different event 
types changes, using an EUE metric in 
accreditation better captures true contribution to 
reliability across events
‒ For example, a certain resource type may be able to help 

avoid most (short & shallow) load shed events but have 
limited value during the most extreme events where most 
unserved energy is observed; such a resource would 
receive relatively high LOLE-based accredited value but 
lower EUE-based accredited value

Example of differences in loss-of-load metrics:
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Qualification and Accreditation
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Winter Qualification Requirements

• NERC standards on winterization for generators are currently under review at 
the FERC (project link: EOP-012-1)

• The ISO/RTO Council (“IRC”), of which PJM is a member, has filed comments 
in the proceeding: IRC comments
– Requesting the Commission (i) approve the standards as drafted, while simultaneously 

(ii) directing NERC to go back and enhance the EOP-012-1 standard to address noted 
weaknesses, including the manner in which the “extreme cold weather temperature” of a 
unit is determined 

• Beyond pending NERC standards, the proposed design focuses on capturing 
correlated outage risks of generators due to reasons like failure to winterize, 
lack of firm fuel, etc. in the capacity accreditation process

https://www.nerc.com/pa/Stand/Pages/Project-2021-07-ExtremeColdWeather.aspx
https://elibrary.ferc.gov/eLibrary/filelist?accession_number=20221208-5033&optimized=false
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Accreditation: ELCC for All

• Consistently account for all supply-side availability risks for all resource types
• Accredit thermal using ELCC model

– Incorporate temperature-dependent forced outage rates
– Account for differences in performance of fuel secure vs. insecure resources
– Under this framework, can incrementally improve model to better capture other thermal 

limitations that impact relative value (e.g., run hour limitations)
• Accredit DR using ELCC model

– Account for availability limitations coinciding with periods of risk
• Accredit based on marginal contribution to resource adequacy (i.e. marginal impact 

on the reliability metric – EUE – relative to a perfect generator)

Improve accreditation to capture additional risk drivers and more accurately 
and equitably determine resources’ relative contributions to resource adequacy
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Incorporating weather in ELCC Model

• Currently, the ELCC model does not directly use weather data
– Load scenarios are derived using a normal distribution based on PJM Load Forecast
– Thermal forced outages for all weeks, except winter peak week, are not weather-

dependent

• Using weather from an adequate set of historical years (e.g. 50 years) would 
allow us to directly derive:
– Load scenarios (via PJM Load Forecast regression model)
– Variable resource performance (via backcast provided by vendor)
– Thermal resource performance (via a new temperature-dependent forced outage model)
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New temperature-dependent forced outage model

• Historical performance of thermal resources for last 50 years not available
• If a given temperature has occurred multiple times in the last 5 years, a 

resource may have performed in some of those instances while in others it 
may have failed to perform
– Enhanced availability models can reflect the probability that a unit experiences a forced 

outage as a function of temperature based on actual historical data

• After estimating that model, for a given temperature pattern, multiple ELCC 
performance scenarios for a unit can be derived
– In some of those scenarios the unit will perform while in others it will experience a forced 

outage
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Temperature Dependent Forced Outage Model
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Background

• At previous RASTF meetings, PJM has presented data showing a 
correlation between temperature and the occurrence of forced outages

Graph presented
at 10/11/22

RASTF meeting
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Status Quo

• PJM currently models winter peak week forced outages differently 
than for the rest of the year

Graph is built with data from
the 2022 RRS for delivery year
2026/27
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Opportunities

• The Winter Peak Week distribution shown in the previous slide was built with 
data from winter peak weeks in period delivery year (DY) 07/08 through 
delivery year 21/22 (excluding DY 13/14 and replacing it with DY 14/15)
– The maximum and minimum RTO-wide forced outage values in the winter peak week 

distribution are 12% and 2.2%, respectively
– The minimum RTO-wide forced outage value occurred on the winter peak week of 

delivery year 19/20, which was a rather mild winter week.

• In the RRS and ELCC models, the minimum forced outage value above 
(2.2%) has the same chance of occurring than the maximum forced outage 
value (12%) on winter days with 90/10 or 95/5 simulated peak loads.
– It is worth exploring other methodologies to determine if the above practice is acceptable 

or if refinements are needed.



PJM©202323www.pjm.com | Public

• Assume we have a unit with 101 on-demand hours of data. In 77 of those 
hours the unit is fully available while in 24 is fully on a forced outage. The 
EFORd of the unit is ~ 24%

• If we label an available hour with an A and each outage hour with an F (of 
any size) we get:

Forced Outage Modeling Basics

AA

AA

AF

FF

A

A

A

F

F

A

A

FA

AA

101 hours 100 transitions

tallying all
transitions T

T Count

AA 73

AF 3

FF 21

FA 3

A F

A 73 / 76 3 / 76

F 3 / 24 21 / 24

A F

A 0.961 0.039

F 0.125 0.875

Markov Chain
Transition Matrix

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7
calculating the

transition probabilities
(e.g. when unit is in A, what is the probability

that it remains in A)
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• For a Markov Chain Transition Matrix, we can calculate the Steady 
State behavior, which is the long-term probability that the unit will 
be in each state

Forced Outage Modeling Basics

A F

A 0.961 0.039

F 0.125 0.875

Markov Chain
Transition Matrix

Prob

A 0.76

F 0.24

Steady State

We are back at the
EFORd of the unit



PJM©202325www.pjm.com | Public

• In an LOLE model, using Monte Carlo, we can create multiple 
scenarios (Sc) from the Markov Chain Transition Matrix 

Forced Outage Modeling Basics

A

A

A

F

F

A

A

…

A

Sc 1
A

F

F

F

A

A

A

…

F

Sc 2

F

F

A

A

A

A

A

…

A

Sc 3
A

A

A

A

A

A

F

…

F

Sc 4
A

A

A

A

A

F

F

…

A

Sc 5

A

A

A

A

A

F

F

…

A

Sc N

……

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

If N is large enough

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

In ~24% of scenarios unit is forced out in H1

In ~24% of scenarios unit is forced out in H2

In ~24% of scenarios unit is forced out in H3

In ~24% of scenarios unit is forced out in H4

In ~24% of scenarios unit is forced out in H5

In ~24% of scenarios unit is forced out in H6

In ~24% of scenarios unit is forced out in H7

In ~24% of scenarios unit is forced out in HX
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Incorporating weather into the Forced Outage Modeling

• To examine if the transition probabilities (AA, AF, FF, FA) are 
impacted by weather variables such as temperature, we can use 
the approach described in the 2019 paper by Murphy et al

• Using our previous example

AA

AA

AF

FF

A

A

A

F

F

A

A

FA

AA

Unit status 100 transitions

40

45

50

60

61

50

48

Temperature

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

We now have a temperature value associated
with each transition.

In the previous basic example, to derive the transition
matrix (and the transition probabilities), we just simply
tallied the transitions and performed some basic math.
For instance, to determine the AA transition probability,
we divided 73 (the number of AA transitions) by 76 (the
number of times the first state in any transition was A)

To analyze if temperature impact the transition probabilities
we need to change the modeling.
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Transition Probabilities as a function of temperature

• To assess if a unit’s transition probabilities in the transition matrix are 
impacted by temperature, we will use logistic regression

A F

A PAA (T) PAF (T)

F PFA (T) PFF (T)
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Transition Probabilities as a function of temperature

A F

A PAA (T) PAF (T)

F PFA (T) PFF (T)
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Using the temperature-dependent transition probabilities in an 
LOLE model

A

A

F

F

F

F

A

…

F

Sc 1
A

F

A

F

A

F

F

…

F

Sc 2

F

A

A

A

F

A

F

…

F

Sc 3
A

A

A

A

A

A

F

…

F

Sc 4

A

A

A

A

A

F

F

…

F

Sc N

……

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

In ~24% of scenarios unit is forced out in H1

In ~24% of scenarios unit is forced out in H2

In ~24% of scenarios unit is forced out in H3

In ~34% of scenarios unit is forced out in H4

In ~34% of scenarios unit is forced out in H5

In ~44% of scenarios unit is forced out in H6

In ~54% of scenarios unit is forced out in H7

In ~64% of scenarios unit is forced out in HX

65

70

64

54

44

34

24

…

14

Temperature

There will be different 
transition matrices 

based on temperature

As an example, let’s consider a unit that tends to experience more forced outages
as the temperature decreases. The scenarios in the LOLE model may look like below:

As it gets colder, a 
larger share of the N 
scenarios will show 
the unit forced out
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Using the temperature-dependent transition probabilities in an 
LOLE model

A

A

F

F

F

F

A

…

F

Sc 1
A

F

A

F

A

F

F

…

F

Sc 2

F

A

A

A

F

A

F

…

F

Sc 3
A

A

A

A

A

A

F

…

F

Sc 4

A

A

A

A

A

F

F

…

F

Sc N

……

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

Hour 1

Hour 2

Hour 3

Hour 4

Hour 5

Hour 6

Hour 7

Hour X
…

In ~24% of scenarios unit is forced out in H1

In ~24% of scenarios unit is forced out in H2

In ~24% of scenarios unit is forced out in H3

In ~24% of scenarios unit is forced out in H4

In ~24% of scenarios unit is forced out in H5

In ~24% of scenarios unit is forced out in H6

In ~24% of scenarios unit is forced out in H7

In ~24% of scenarios unit is forced out in HX

65

70

64

54

44

34

24

…

14

Temperature

Transition matrices 
don’t change based 

on temperature

As an example, let’s consider a unit that DOES NOT tend to experience more forced outages
as the temperature decreases. The scenarios in the LOLE model may look like below:

As it gets colder, the 
same share of the N 
scenarios will show 
the unit forced out
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Outage size in the temp. dependent forced outage model 

• As shown in previous slides, the temperature dependent forced 
outage model is a two-state model: the unit is either available (A) 
or on a forced outage (F)

• In the LOLE model, what outage size should we consider when a 
unit is in the forced outage state?
– Currently, we are considering two approaches to estimate the outage 

size:
• Single duration-weighted outage size to be used during entire year
• Summer duration-weighted outage size and winter duration-weighted outage size
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Performance Assessments
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Performance Assessments

There exists a 
tension across 
at three natural 
design criteria 
for performance 
assessments, 
requiring 
compromise 
across them.

Importance of sufficiently 
strong/frequent assessments

Limiting risk 
of atypical 

underperformance

Timing of 
assessments 
focused on 
hours of risk
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Timing of Performance Assessment Intervals

Only 
during 
loss of
load hours

Only 
during 
reserve 
shortages

Only 
based on 
emergency 
actions

Based on 
emergency and 
pre-emergency 
actions

Locationally 
when nodal
LMP exceeds a 
threshold value 
(e.g., $850/MWh) 
that is indicative 
of scarcity, plus 
stressed system 
or local conditions 
as at left

During “stress” 
conditions at left, 
supplemented with 
additional intervals
to meet a certain 
number (e.g., 30) of 
PAIs every year, 
based on ex-post 
(end of delivery year) 
hours with tightest 
supply cushion

During many 
(e.g., several 
hundred) 
predetermined 
hours

During 
all hours

Spectrum of  Options for PAI Triggers
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Performance Assessment Design

• Assessment Periods focused on times of system stress

• Performance Penalty Rate at status quo levels or higher, to better align forward capacity 
market with real-time performance assessments

• For determining the Expected Performance of generation during PAIs, considering:
a) A static baseline (status quo), where expected performance is based on a single committed UCAP 

value and the PAI balancing ratio in all hours, or
b) A variable baseline, where expected performance may vary hour-to-hour consistent with the risk-

weighted hourly availability assumed in the accreditation

• Improve clarity and simplify Excusals

Maintain current conceptual framework for performance assessments, with changes to 
certain design elements for enhanced clarity and transparency
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Multi-Component Penalty Structure

One option under consideration is to take the maximum penalty across:

1. PAI penalties

2. Testing penalties
- All dispatchable resources subject to testing with assessed penalties for inability to demonstrate 

capability at or above committed capacity value
- Resources that have demonstrated capabilities through normal course of operation would not be 

required to undergo additional testing

3. Daily capacity deficiency and obligation non-compliance penalties
- Clawback of capacity revenues proportionally for days / periods of deficiency / non-compliance

Consider enhancements to multi-component incentive structure that values 
performance during risk hours, capability testing, and compliance with obligations
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