CPQR Simulation Example

RASTF June 10, 2022 Joe Bowring Siva Josyula

Competitive Offer

Unit specific competitive offer for a CP resource:
 p = Net ACR + Net (Expected Penalties - Expected Bonuses)

$$or, p = \begin{cases} Net \ ACR + CPBR \times H \times (\overline{B} - \overline{A}), & if \ \overline{B} < \overline{A} \\ Net \ ACR + PPR \times H \times (\overline{B} - \overline{A}), & if \ \overline{A} < \overline{B} \end{cases}$$

Where:

- Net ACR = Gross ACR Net E&AS revenues
- CPBR is the average bonus payment rate during PAI
- PPR is the average nonperformance charge rate during PAI (tariff defined).
- H is the expected number of PAI divided by 12
- \overline{A} is the expected unit performance during PAI
- $ar{B}$ is the expected balancing ratio during PAI

©2022

CPQR

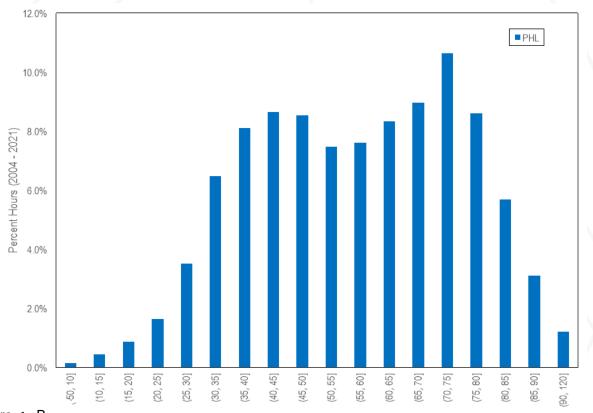
- CPQR includes both the expected net nonperformance charges and the cost to mitigate the risk associated with the estimated net nonperformance charges.
- Net nonperformance charges can be simulated to account for uncertainty in the inputs to calculation (A, B, H).
- The MMU framework for evaluating the simulation approach was presented on March 24, 2022.

CPQR

CPQR = E(net penalties) + Cost of mitigating risk Where:

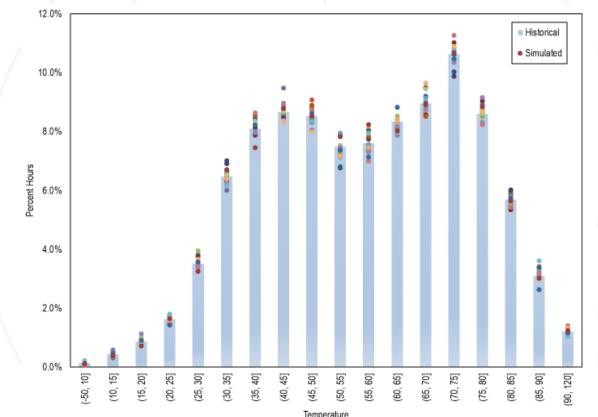
- *E(net penalties):* expected value (mean) from distribution of simulated outcome
 - Can be positive, negative, or zero.
- Cost of mitigating risk=Risk Cost x (Extreme Value Mean)
- Extreme Value: for example 30th percentile or 95th percentile of distribution of simulated outcomes.
- Risk Cost:
 - Cost of incurring risk of nonperformance penalties
 - Affected by factors including portfolio

Simulation Model


- Simulation of CP nonperformance charges and bonus payments.
- The key inputs are:
 - A: Unit specific performance during PAH
 - B: Balancing Ratio during PAH
 - H: Number of PAH
 - CPBR: Average bonus payment rate during PAI
 - PPR: Nonperformance charge rate during PAI for the unit's zone (PPR value in tariff)
 - Stop loss limit
 - Tax rate
 - Historical temperature data.

Simulation Model – Stage 1

- Two stage simulation.
- First stage simulates future temperature outcomes based on history.
 - Location is a proxy weather station close to the unit. For this example, location is PHL.
 - Assumes temperature is a multinomial random variable with probability calculated empirically.
- 500 sample years generated using 18 years (2004 2021) of weather history.
 - Each sample distributes 8,760 hours into the specified temperature ranges.


Example: PHL Temperature History

(A, B]: A < Temperature <= B

Temperature

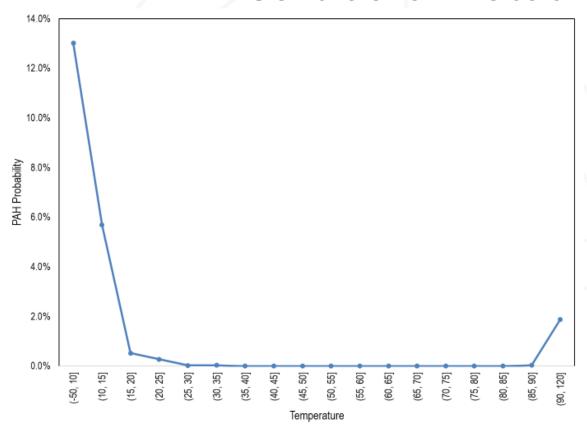
Sample Simulated Temperature Distributions

Circles show 20 simulated samples based on historical average (bars)

Sample Simulated Temperature Distributions

 Table shows number of hours out of 8,760 that fall into each temperature category from three sample simulated years.

	Ti	N(T _i)			
	*1	Sample Year 1	Sample Year 2	Sample Year 3	
	(-50, 10]	9	8	11	
	(10, 15]	36	45	47	
	(15, 20]	79	87	66	
	(20, 25]	155	128	155	
	(25, 30]	335	304	346	
	(30, 35]	552	572	580	
	(35, 40]	721	714	718	
	(40, 45]	761	765	749	
	(45, 50]	759	795	701	
	(50, 55]	629	638	640	
	(55, 60]	640	651	659	
	(60, 65]	734	691	747	
	(65, 70]	758	762	802	
	(70, 75]	933	938	933	
	(75, 80]	783	773	745	
	(80, 85]	500	481	490	
	(85, 90]	280	299	268	
	(90, 120]	96	109	103	
	Total	8,760	8,760	8,760	

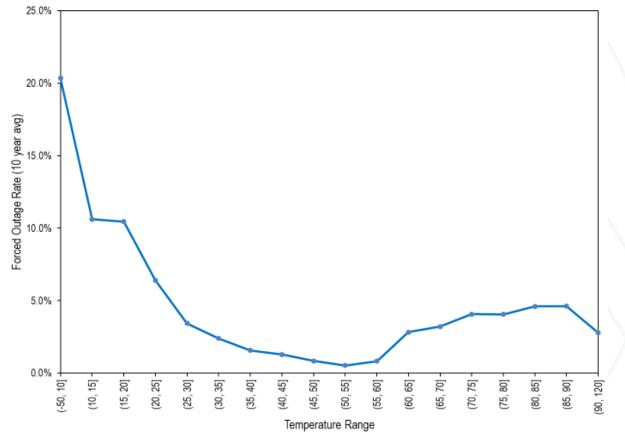

Simulation Model – Stage 2

- Second stage simulates:
 - conditional probability of PAH given temperature,
 - conditional probability of forced outage given temperature,
 - balancing ratio during PAH given temperature.

Simulation Model – Stage 2

- Conditional probability of PAH given a temperature range is based on 10 year history of temperature and PAH or proxy.
 - PAH includes emergency actions that would have triggered PAH prior to Capacity Performance.
 - Temperature dependent PAH probabilities calculated for the zone where unit is located.
- Fewer emergencies since CP implemented.
- Ten year history overestimates emergencies.

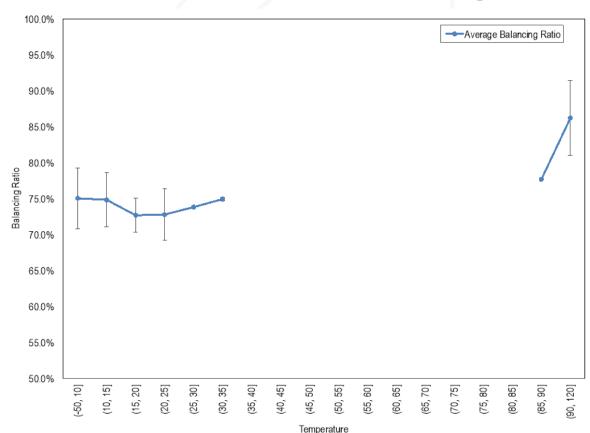
PAH Conditional Probabilities



- Data from 2012 through 2021.
- All emergency actions in eastern PJM included:
 - RTO
 - Mid-Atlantic Dominion
 - BGE & Pepco

Simulation Model – Stage 2

- Conditional probability of unit forced outages given a temperature range is based on 10 year history of temperature and forced outages
 - Unit specific calculation based on GADS reported forced outages.
 - Equivalent forced outage rate calculated that includes both derates and full unit forced outages.
- Outage rates lower since CP implemented.
- Ten year history overestimates forced outage rates.


Example Unit Forced Outage Probabilities

Balancing Ratio (B)

- Conditional value of balancing ratio during a PAH, given a temperature range, is based on 10 year history of balancing ratios during PAH or proxy PAH.
- Balancing ratio is used to calculate expected performance for each resource during a PAI.
- B calculated for the RTO even if the emergency was regional. Same PAH as used in the PAH history.
 - RTO
 - Mid-Atlantic & Dominion
 - BGE & Pepco

Balancing Ratio

- Balancing ratio exists only for categories with historical PAH or proxy PAH.
- Error bars show the standard deviation of balancing ratio for each temperature category.
- No error bars indicate very few PAH (1 or 2).

Simulating penalties and bonuses – Stage 2

- For each temperature range, conditional probabilities of PAH and unit forced outages are simulated as results of a binomial process (repeated Bernoulli trials).
- 1,000 Bernoulli trials:
 - PAH = 1 or 0, and FO = 1 or 0.
 - If PAH = 1 and FO = 1, then penalty.
 - If PAH = 1 and FO = 0 then bonus.
 - If PAH = 0, no penalty or bonus regardless of FO.
- For each temperature range, B is simulated as a normal random variable with the historical mean and standard deviation.

Simulating penalties and bonuses – Stage 2

- Each binomial process generates conditional probabilities for a given temperature range, i:
 - Probability of PAH, $p(PAH/T) = \sum (PAH)/1,000$
 - Probability of penalties, $p(penalties/T) = \sum (PAH * FO)/1,000$
 - Probability of bonuses, $p(bonuses/T) = \sum (PAH * (1 FO))/1,000$
- For each penalty or bonus hour, a unit would pay maximum nonperformance charges for MW = B*UCAP.
- Similarly, a unit is eligible for bonuses for MW = (1 B)*UCAP.
- Incorporating the simulated B:
 - Penalty probability $P(^{pen}/_{T_i}) = \sum (PAH * FO * B_i)/1,000$
 - Bonus probability $P(\frac{bon}{T_i}) = \sum (PAH * (1 FO) * (1 B_i))/1,000$

©2022

Net Penalty Probability – Stage 2

- 1,000 such conditional probabilities are generated for each temperature category.
- The net penalty probability for temperature category i is calculated as:

$$p(net/T_i) = P(pen/T_i) - P(bon/T_i)$$

- Portion of underperformance can be excused.
 - Results in effective penalty rate lower than the tariff defined rate.
 - Results in bonus payment rate lower than penalty rate.

Combining Stage 1 and Stage 2

- Each of the 1,000 stage 2 simulated outcomes is multiplied by the number of hours in that temperature category $N(T_i)$, for each of the 500 simulated years to get the net penalty hours.
- (Net Penalty Hours)_i= $N(T_i) * P(\frac{net}{T_i})$
- Total net penalty hours = $\sum_{i} (Net \ penalty \ hours)_{i}$
- Results in 500,000 possible outcomes for each unit for net non performance charges in a year.
 - Mean is the expected net penalty hours in a year.
 - Percentiles show the distribution of net penalty hours in a year.

Sample Results: Net nonperformance charges

Net Nonperformance Charges				
(\$/MW-day) UCAP				
Mean (m)	-\$7.7			
Percentiles				
р5	-\$11.2			
p10	-\$10.4			
p25	-\$9.1			
p50	-\$7.7			
p75	-\$6.3			
p90	-\$5.2			
p95	-\$4.4			
p95 - Mean (a) \$3.3				
Cost of Risk (b) 10%				
Risk Premium (c=a*b) \$0.33				
Mean + Risk Premium (m+c) -\$7.39				

- Using nonperformance charge rate = \$3,366.27 per MWh (EMAAC, 2023/2024 BRA)
- Net nonperformance charges (\$/MW-day) = Net penalty hours*Rate (\$/MWh)/365.

Notes

- The simulation outcome is the \$/MW-day UCAP value.
 - Auction EFORd needed to convert to \$/MW-day ICAP terms.
- No GADS data for intermittent resources.
 - The source of risk is due to both intermittency and forced outages.
 - ELCC reduces committed UCAP, reduces risk of penalties.
- Newer units without long history need proxy outage rates if they have not operated under extreme temperatures.
 - Nonperformance risk is concentrated in extreme temperature ranges.

Monitoring Analytics, LLC
2621 Van Buren Avenue
Suite 160
Eagleville, PA
19403
(610) 271-8050

MA@monitoringanalytics.com www.MonitoringAnalytics.com