Dispatch Effects on Storage ELCC in PJM

PJM CCSTF July 16, 2020

Astrapé Resource Adequacy Clients

SERVM Framework

Simulate PJM as an Island

2019 Projected Portfolio Plus Incremental Battery Storage

Capture Uncertainty in the Following Variables

- Weather (35 years of weather history)
 - Impact on Load and Resources (hydro, wind, PV, temp derates on thermal resources)
- Economic Load Forecast Error (distribution of 5 points)
- Unit Outage Modeling (1000s of iterations)
- Multi-Area Modeling Pipe and Bubble Representation within PJM
- Total Base Case Scenario Breakdown

innovation in electric system planning

ELCC Methodology

Scenarios

• 4-Hour Battery Penetrations Studied

- 2,000 MW
- **5,000 MW**

Emergency Dispatch Method*

- 1. Storage Dispatched After DR
- 2. Storage Dispatched Before DR; Entire DR Fleet Dispatched Together; Storage Used to Balance Load
- 3. Storage Dispatched Before DR; Entire DR Fleet Dispatched Together; Excess Generation Used to Charge Storage

*Batteries dispatched economically if not in emergency conditions

Dispatch Method Illustrations

11 12 13 14 15 16 17 18 19 20 21 22 23 24

----- Load Minus DR Minus Storage ----- Storage Energy Balance

Load Minus DR

5000

0

Battery

Hours Used

2.67

3.53

TRAPÉ CONSULTING

innovation in electric system planning

2.93

105,000

100,000

8 9 10

— Net Load

		Battery Portfolio	
		2GW Storage	5GW Storage
Emergency Dispatch Method	1) Storage Last	97%	92%
	2) DR Last; Entire DR Dispatched	88%	85%
	3) DR Last; Entire DR; Charge Storage	88%*	85%*

*Preliminary

Projected DR Utilization – Hours Per Year

At 0.1 LOLE

		Battery Portfolio	
		2GW Storage	5GW Storage
Emergency Dispatch Method	1) Storage Last	16.4	15.1
	2) DR Last; Entire DR Dispatched	28.5	28.0
	3) DR Last; Entire DR; Charge Storage	28.9	28.4

+7,500 MW Reserves

		Battery Portfolio	
		2GW Storage	5GW Storage
Emergency Dispatch Method	1) Storage Last	2.8	2.4
	2) DR Last; Entire DR Dispatched	6.1	5.4
	3) DR Last; Entire DR; Charge Storage	6.1	5.4

Conservative Assumptions

- No reserves preserved during firm load shed, so batteries can only provide reliability benefit by discharging energy
- Modeled as an island which ignores the potential steepening effect of neighbor support (neighbors more likely to support before and after peak)

- PJM's dispatch methodology underestimates capacity value by > 40%
- Underestimating capacity value when battery penetration reaches
 5GW equates to >2GW lost capacity from batteries
- Dispatch order has the potential to have minimal impact on estimated DR activations with more refined block loading dispatch of DR

Wind/Solar Modeling

Does the PJM selection of weather shapes adequately capture variability and weighting of ELCC contribution?

Weather Year

Peak Gross Load (MW)