

PJM Load Model Selection for 2018 RRS

Patricio Rocha-Garrido Senior Engineer, Resource Adequacy Planning RAAS May 31, 2018

- Analysis based on method approved at June 9, 2016 PC meeting (Appendix V in 2016 RRS Assumptions Letter)
- Based on 2018 Load Forecast Report. Focus is on 2022/23 Delivery Year.

見

Comparing PJM Load Forecast with PLOTS/PRISM

PJM Load Forecast

- Load history from 1998 -2017 used to develop daily peak load forecast regression models
- Uses 23 years of weather history to develop a range of forecasted loads
- Model based on Calendar Year
- Produces a median (50/50) load and seasonal distribution of daily peaks
- Relationship between 12 monthly peaks

PLOTS/ PRISM

- Uses 7+ years of historic hourly loads
- 12 monthly forecasted loads to obtain forecast monthly load shape of DY 2022/23
- Model based on Delivery Year (DY)
- Produces magnitude-ordered daily peak load distributions for each week

PJM Load Model Selection Criteria

Criteria

- Include most recent data to capture load patterns
- Include more historical years to reduce sensitivity from abnormal years (e.g.: 2006)
- Choose IRM Study load models that are consistent with the Load Forecast Model distributions.
- Consider historical PJM/World load diversity

PJM Load Model Combinations to Assess

Load Model #	Description	Load Model #	Description
51790	1998-2015 18 Year LM	51751	2001-2010 10 Year LM
51791	1998-2014 17 Year LM	51752	2002-2011 10 Year LM
51792	1999-2015 17 Year LM	51753	2003-2012 10 Year LM
51793	1998-2013 16 Year LM	51754	2004-2013 10 Year LM
51794	1999-2014 16 Year LM	51755	2005-2014 10 Year LM
51795	2000-2015 16 Year LM	51756	2006-2015 10 Year LM
51796	1998-2012 15 Year LM	51757	1998-2006 9 Year LM
51797	1999-2013 15 Year LM	51758	1999-2007 9 Year LM
51798	2000-2014 15 Year LM	51759	2000-2008 9 Year LM
51799	2001-2015 15 Year LM	51760	2001-2009 9 Year LM
51800	1998-2011 14 Year LM	51761	2002-2010 9 Year LM
51801	1999-2012 14 Year LM	51762	2003-2011 9 Year LM
51802	2000-2013 14 Year LM	51763	2004-2012 9 Year LM
51803	2001-2014 14 Year LM	51764	2005-2013 9 Year LM
51804	2002-2015 14 Year LM	51765	2006-2014 9 Year LM
51805	1998-2010 13 Year LM	51766	2007-2015 9 Year LM
51806	1999-2011 13 Year LM	51767	1998-2005 8 Year LM
51807	2000-2012 13 Year LM	51768	1999-2006 8 Year LM
51808	2001-2013 13 Year LM	51769	2000-2007 8 Year LM
51809	2002-2014 13 Year LM	51770	2001-2008 8 Year LM
51810	2003-2015 13 Year LM	51771	2002-2009 8 Year LM
51811	1998-2009 12 Year LM	51772	2003-2010 8 Year LM
51812	1999-2010 12 Year LM	51773	2004-2011 8 Year LM
51813	2000-2011 12 Year LM	51774	2005-2012 8 Year LM
51814	2001-2012 12 Year LM	51775	2006-2013 8 Year LM
51815	2002-2013 12 Year LM	51776	2007-2014 8 Year LM
51816	2003-2014 12 Year LM	51777	2008-2015 8 Year LM
51817	2004-2015 12 Year LM	51778	1998-2004 7 Year LM
51818	1998-2008 11 Year LM	51779	1999-2005 7 Year LM
51819	1999-2009 11 Year LM	51780	2000-2006 7 Year LM
51820	2000-2010 11 Year LM	51781	2001-2007 7 Year LM
51821	2001-2011 11 Year LM	51782	2002-2008 7 Year LM
51822	2002-2012 11 Year LM	51783	2003-2009 7 Year LM
51823	2003-2013 11 Year LM	51784	2004-2010 7 Year LM
51824	2004-2014 11 Year LM	51785	2005-2011 7 Year LM
51825	2005-2015 11 Year LM	51786	2006-2012 7 Year LM
51826	1998-2007 10 Year LM	51787	2007-2013 7 Year LM
51827	1999-2008 10 Year LM	51788	2008-2014 7 Year LM
51828	2000-2009 10 Year LM	51789	2009-2015 7 Year LM

Rationale Behind Load Model Selection Approach

Peak Day (CP1) Cumulative Distribution

PJM Load Model Selection

- For each PLOTS Load Model Candidate:
 - Calculate weekly parameters using:
 - PLOTS mean and std. deviations
 - PJM forecasted monthly loads for 22/23 DY
 - Forecast Error Factor (FEF)= 0.01

Load Forecast Model CP1 Distribution - 2017 vs 2018

CP1 Comparison: 2018 vs 2017 - Upper 30th Percentile

PJM Load Model Selection – Approach 1

Approach 1 – Summer Seasonal Peak CDF

- 5 random draws from peak week to represent weekday daily peaks
- Calculate highest load from 5 weekdays Seasonal Peak
- Generate 299 scenarios and develop CDF

PJM Load Model Selection – Approach 1

⊅∕pjm

PJM Load Model Selection – Approach 2

Approach 2

- Use 299 summer seasonal peak loads from load forecast and associated cumulative probability (CDF of CP1)
- For each PLOTS load model
 - Use peak week distribution
 - Calculate probability of drawing a value less than or equal to each of the 299 seasonal peaks from the peak week distributions
 - Calculate absolute error between the above computed probability and the respective probability in the CP1 CDF

PJM Load Model Selection – Approach 2

PJM Selected Load Models

- Load Model (LM) Choices
 - 51763: 2004-2012 9 YR LM
 - 51753: 2003-2012 10 YR LM
 - 51824: 2004-2014 11 YR LM
- Last year's selected LM (2003 2012) is one of the top candidates this year.
 - It is a close second place under both approaches
 - It includes an additional year worth of load data compared to the best ranked LM (2004 – 2012)

World Load Models

- World Load Models were created using PLOTS program, observing the same historic time periods. In so doing, we consider the PJM/World diversity.
 - Uses historic Coincident Peak pattern
 - World defined as MISO, NY, TVA, and VACAR.

LM #51763 (2004-2012) - PJM vs World Assessment

		PJM RTO LM #51763 9 Yr Load Model - 2004 - 2012	World Region LM #51841
Month	WK#	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8429	0.8815
June	6	0.9236	0.9458
June	7	0.9420	0.9586
July	8	0.8597	0.9121
July	9	0.8998	0.9530
July	10	1.0000	1.0000
July	11	0.9261	0.9706
August	12	0.9696	0.9958
August	13	0.9453	0.9514
August	14	0.8515	0.8739
August	15	0.8186	0.8652

LM #51753 (2003-2012) - PJM vs World Assessment

		PJM RTO LM #51753 10 Yr Load Model - 2003 - 2012	World Region LM #51842
Month	WK #	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8279	0.8775
June	6	0.9420	0.9463
June	7	0.8913	0.9586
July	8	0.8734	0.9071
July	9	0.9033	0.9556
July	10	1.0000	1.0000
July	11	0.9303	0.9738
August	12	0.9696	0.9958
August	13	0.9454	0.9543
August	14	0.8685	0.8877
August	15	0.8373	0.8687

LM #51824 (2004-2014) - PJM vs World Assessment

		PJM RTO LM #51824 11 Yr Load Model - 2004 - 2014	World Region LM #51843
Month	WK #	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8441	0.8823
June	6	0.9099	0.9464
June	7	0.9420	0.9586
July	8	0.8744	0.8891
July	9	0.9001	0.9282
July	10	1.0000	1.0000
July	11	0.9228	0.9446
August	12	0.9696	0.9958
August	13	0.9401	0.9845
August	14	0.8475	0.9016
August	15	0.8145	0.8701

⊅∕pjm

Historical Peak Load Coincidence PJM / World

Year	PJM Peak - Actual Date	World Peak - Actual Date	Peak Coincidence?
1998	21-Jul-98	21-Jul-98	Yes
1999	30-Jul-99	28-Jul-99	No
2000	9-Aug-00	31-Aug-00	No
2001	9-Aug-01	8-Aug-01	No
2002	1-Aug-02	1-Aug-02	Yes
2003	21-Aug-03	14-Aug-03	No
2004	3-Aug-04	2-Aug-04	No
2005	26-Jul-05	3-Aug-05	No
2006	2-Aug-06	1-Aug-06	No
2007	8-Aug-07	8-Aug-07	Yes
2008	9-Jun-08	21-Jul-08	No
2009	10-Aug-09	10-Aug-09	Yes
2010	7-Jul-10	4-Aug-10	No
2011	21-Jul-11	20-Jul-11	No
2012	17-Jul-12	17-Jul-12	Yes
2013	18-Jul-13	18-Jul-13	Yes
2014	7-Jan-14	7-Jan-14	Yes
2015	28-Jul-15	28-Jul-15	Yes
2016	11-Aug-16	21-Jul-16	No

In the last 19 years, PJM and the World **have not peaked** on the same day 11 times.

LM #51753 (2003-2012) - Switching of World peak week

		PJM RTO I M #51753	World Region
		10 Yr Load Model - 2003 - 2012	
Month	WK#	Per-Unitized Peak	Per-Unitized Peak
July	8	0.8734	0.9071
July	9	0.9033	0.9556
July	10	1.0000	0.9738
July	11	0.9303	1.0000

World peak week is now on Week 11. Originally, it was in Week 10.

- PJM recommendation to RAAS on selection of historical time period for load model:
 - Use 10yr (2003-2012, #51753) Load Model for 2018 RRS Base Case and switch World peak to a different July week so that PJM and World peak on the same month but not on the same week.
 - It was used in the 2016 RRS and 2017 RRS
 - It is a close second place under both approaches but it includes more load data than the load model occupying the first place
 - Switch in World peak week is performed to match historical diversity observed between PJM and World