

No-Load and Incremental Energy Offer Numerical Examples

Tom Hauske
Performance Compliance
Cost Development Subcommittee
February 16, 2021

Creation of a No-Load & Incremental Energy Offer

- Data needed to create a No-Load and Incremental Energy Offer
 - Fuel Price (methodology in Fuel Cost policy)
 - Heat Input or Heat Rate Curve
 - Performance Factor
 - Maintenance Adder
 - Operating Cost Adder
 - Emissions Adders
- The bottom 5 items above are values Market Sellers input into MIRA

www.pjm.com | Public 2021

- Heat Input Curves are created from:
 - Normal operations data using plant instrumentation
 - Only steady state operation data should be used
 - Performance Test
 - OEM supplied design heat balances
- EXCEL or other data analysis tools used to determine A, B, C, coefficients for polynomial heat input equation
 - Heat Input = $A + B*x + C*x^2 +$
 - Where x = MWh

mmBtu/hr

Heat Input from Plant Data



- Heat Input Curve Coefficients
 - -A = 306.7441
 - -B = 9.6894
 - C = 0.0016

- Heat Input Curve
 - Heat Input = $306.7441 + 9.6894*(MWh) + 0.0016*(MWh)^2$

- Heat Input Curves are submitted to PJM and the IMM by MIRA's Cost Offer Assumption's Module (COA)
 - $X^0 = A$, $X^1 = B$, $X^2 = C$, and $X^3 = D$

- Input Variable for the Example
 - Total Fuel related Cost = \$14.00/MMBtu
 - Performance Factor (PF) = 1.02
 - Maintenance and Operating Cost adders (VOM) = \$0.15/MMBtu
 - Emissions adders = \$0

Calculation of No-Load Cost

 No-Load Fuel is the total fuel to sustain zero net output MW at synchronous generator speed.

```
using heat input = 306.7441 + 9.6894*(MWh) + 0.0016*(MWh)^2 at 0 MWh = 306.7441 + 9.6894*(0) + 0.0016*(0)^2 (MMBtu/hour) No-Load Heat = 306.7441 MMBtu/hour
```

 No-Load Cost is the hourly cost required to create the starting point of a monotonically increasing incremental offer curve for a generating unit.

```
No-Load Cost = No-Load Fuel * PF * (TFRC + VOM) ($/hour)
= 306.7441 * 1.02 * (14.0 +0.15) ($/hour)
No-Load Cost = $4,427.24 per hour
```


Incremental Energy Offer Calculation

- Two ways to calculate incremental energy offers
 - Block Offers
 - Block difference in Total Operating Cost
 - Slope Offers
 - Incremental Heat Rate Curve

 Calculate Total Operating Costs using total fuel related cost equation from M15 Section 2.3.3

TotalFuelRelatedCosts =

 $Fuel Costs + Fuel Related Costs + SO_2 Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Adder Costs + CO_2 Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Adder Costs + CO_2 Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + Maintenance Cost + CO_2 Allowance Cost + CO_2 Allowance Cost + NO_x Allowance Cost + CO_2 Allowance Cost +$

Simplifies to:

```
Total Operating Cost ($/hr) = Heat Input * PF * (Fuel Cost + VOM)
= Heat Input * 1.02 * (14.00 + 0.15)
```


Steam Unit 1 Operating Cost

Total Operating Cost (50 MWh) = Heat Input(50 MWh) * PF * (Fuel Cost + VOM) (\$/hour) = 795.12 * 1.02 * (14.00 + 0.15) = 11,476 \$/hour

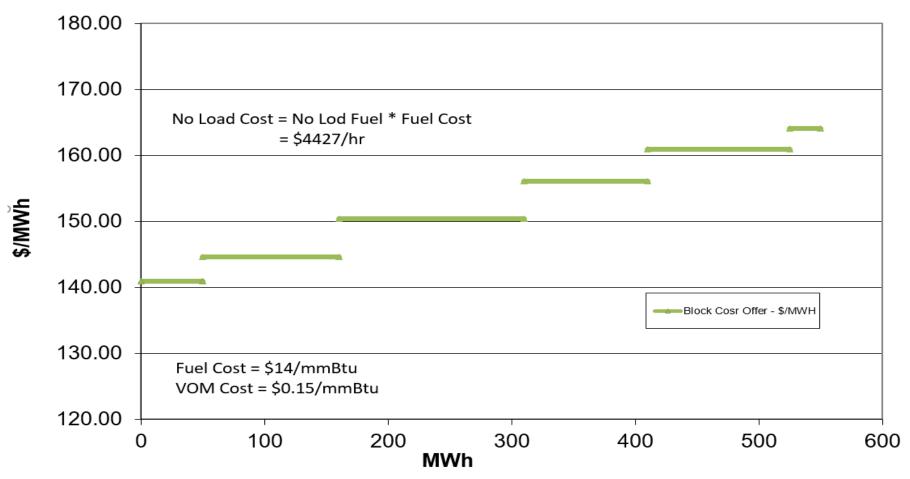
Output (MWh)	Heat Input (mmBtu/hr)	Operating Cost (\$/hr)
50	795.12	11,476
160	1897.08	27,381
310	3460.75	49,949
410	4542.29	65,559
525	5824.73	84,068
550	6109.00	88,171

Incremental Cost (160 MWh) =

[Total Operating Cost (160 MWh) – Total Operating Cost (50 MWh)]/ [160 MWh - 50 MWh] (\$/MWh)

= [27,381 - 11,476] / [160 - 50]

= \$144.59 per MWh


Output (MWh)	Incremental Offer (\$/MWh)
50	140.98*
160	144.59
310	150.46
410	156.10
525	160.95
550	164.11

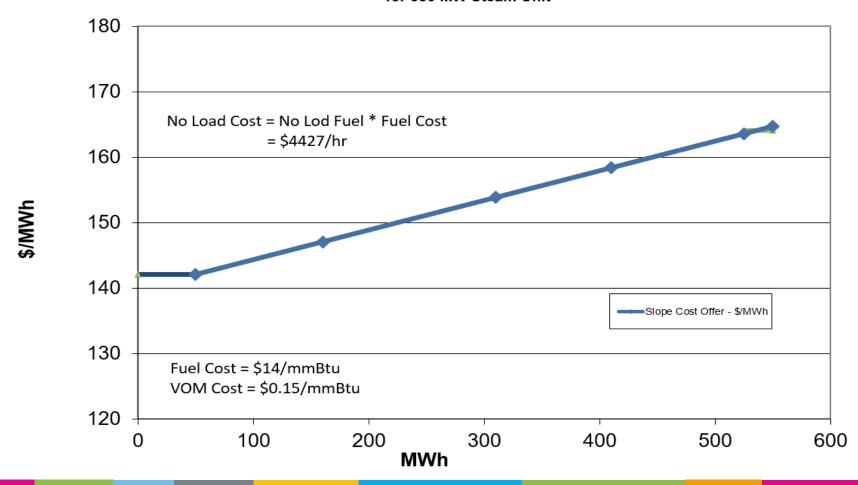
^{*} When calculating the first incremental the No-Load Cost is used for Total Operating Cost at MWh (0)

Market Gateway Block Load Offer

- Slope Offers are calculated using the incremental heat rate equation which is the derivative of the Heat Input equation
 - Heat Input = $306.7441 + 9.6894*(MWh) + 0.0016*(MWh)^2$
 - Incremental Heat Rate (IHR) = 9.6894 + (2 * 0.0016*(MWh))
- Including Fuel and VOM Cost
 - Incremental Offer (\$/MWh) = IHR * PF * (Fuel Cost + VOM)

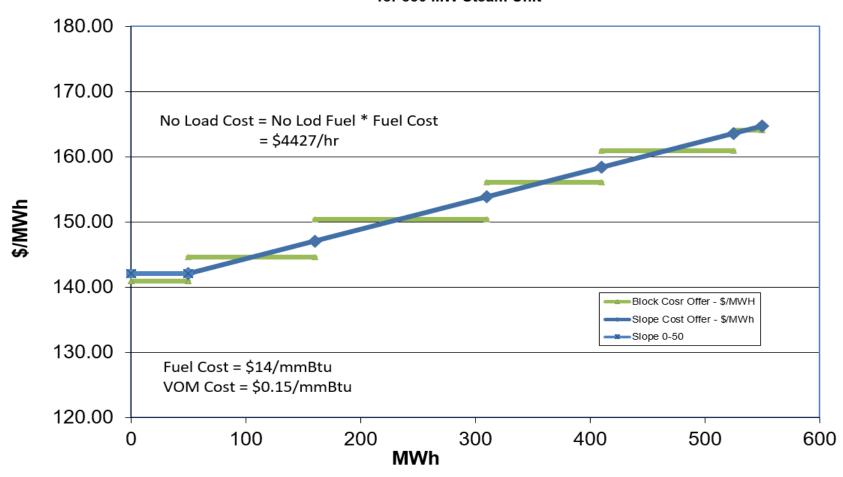
Incremental Cost (50 MWh) = IHR * PF * (Fuel Cost + VOM)

= [9.6894 + (2 * 0.0016*50)] * 1.02 * (14.00 + 0.15)


= \$142.10 per MWh

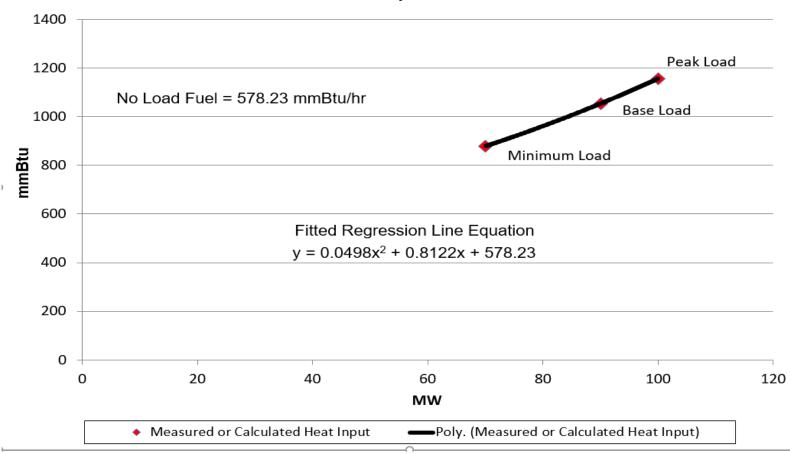
Output (MWh)	Incremental Offer (\$/MWh)
50	142.10
160	147.07
310	153.84
410	158.36
525	163.55
550	164.68

Market Gateway Slope Offer


Typical Oil Heat Rate & Cost Curves for 550 MW Steam Unit

Comparison of Slope and Block Offers

Typical Oil Heat Rate & Cost Curves for 550 MW Steam Unit


Simple Cycle Combustion Turbine Example

- 100 MW simple cycle combustion turbine
 - With fuel cost = \$/MMBtu
 - performance factor = 1.02
 - 70 MW minimum load
 - Maintenance Adder of \$75 / equivalent service hour (ESH)
 - 10 MW peak firing step with a maintenance factor of 4 for peak firing step

Simple CT Heat Input Curve

Combustion Turbine with Peak Firing Step Heat Input Curve

- Heat Input Curve
 - Heat Input = $578.23 + 0.8122*(MWh) + 0.0498*(MWh)^2$
- Heat Input Curve Coefficients
 - A = 578.23
 - -B = 0.8122
 - C = 0.0498

No-Load Heat = 578.23 MMBtu/hr

Calculate No-Load Cost

```
No-Load Cost = [No-Load Fuel * PF * TFRC] + VOM** ($/hour)
= [578.23 * 1.02 * 4.0] + 0 ($/hr)
No-Load Cost = $2359.18 per hour
```

- Calculate Total Operating Cost
- Total Operating Cost (\$/hour) = [Heat Input * PF * Fuel Cost] +
 [Maintenance Factor# * VOM**]

```
= [Heat Input * 1.02 * 4.00] + [MF * VOM]
```

^{**} VOM in \$/ESH can be added to either No-Load or first incremental but not both

[#] Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

CT Unit 2 Operating Cost

Total Operating Cost (70 MWh) = (Heat Input(70 MW) * PF * Fuel Cost) + VOM (\$/hr) = (879.02 * 1.02 * 4.00) + 75 = 3,662 \$/hour

Output (MWh)	Heat Input (mmBtu/hr)	Operating Cost (\$/hr)
70	879.02	3,662
90	1054.57	4,378
100	1157.28	5,022

CT Block Load Offers

Incremental Cost (90 MWh) =

[Total Operating Cost (90 MWh) – Total Operating Cost (70 MWh)]/ [90 MWh - 70 MWh] (\$/MWh)

= [4,378 – 3,662] / [90 – 70]

= \$35.82 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
70	18.61*
90	35.82
100	64.42

^{*} When calculating the first incremental the No-Load Cost is used for Total Operating Cost at MWh (0)

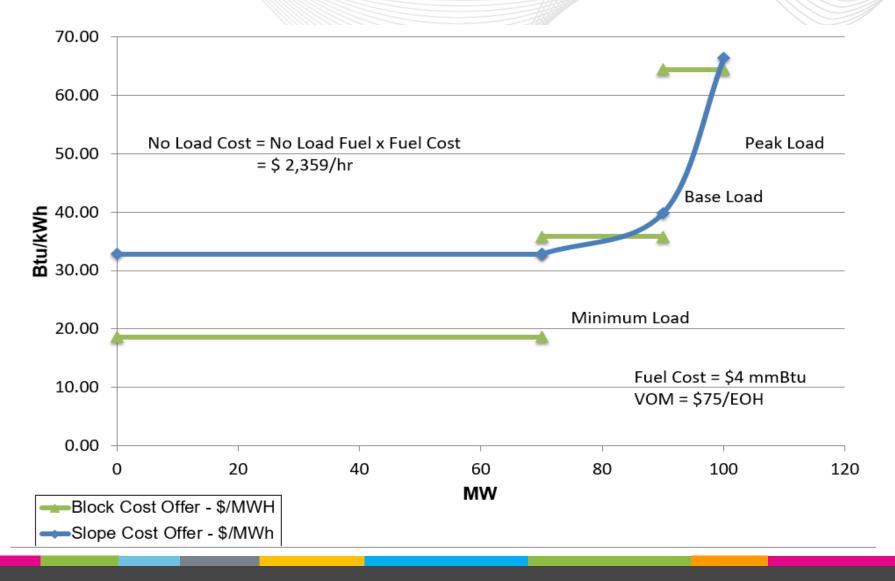
- Slope Offers are calculated using the incremental heat rate equation which is the derivative of the Heat Input equation
 - Heat Input = $578.23 + 0.8122*(MWh) + 0.0498*(MWh)^2$
 - Incremental Heat Rate (IHR) = 0.8122 + (2 * 0.0498*MWh)
- Including Fuel and VOM Cost
 - Incremental Offer (\$/MWh) = [IHR * PF * Fuel Cost] + [(Maintenance Factor# * VOM)/ (MWh(1) – MWh(0)]

[#] Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

Incremental Cost (100 MWh) =

[Incremental Offer (\$/MWh) = [IHR * PF * Fuel Cost] + [(Maintenance Factor# * VOM)/ (MWh(1) – MWh(0)] \$/MWh

$$= [(0.8122 + (2 * 0.0498 * 100)) * 1.02 * 4] + [((4-1) * 75) / (100 - 90)]$$

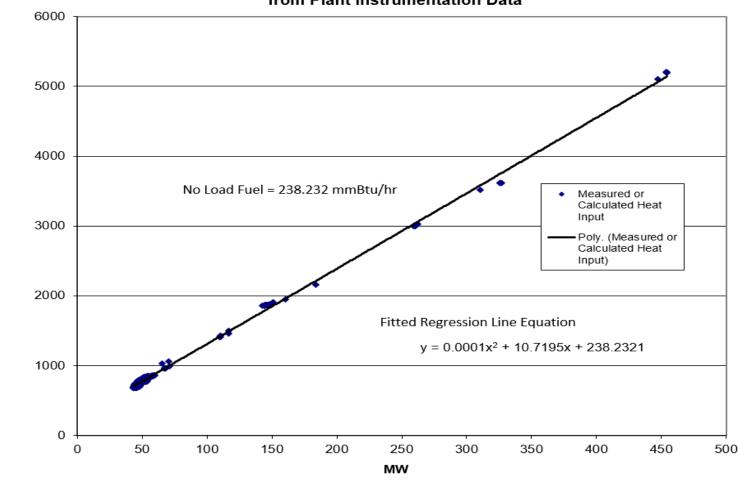

= \$66.45 per MWh

Output (MWh)	Incremental Offer (\$/MWh)
70	32.83
90	39.89
100	66.45

[#] Maintenance Factor is equal to 1 for base load and below and equal to (4-1) for peak firing step

CT Block & Slope Offer

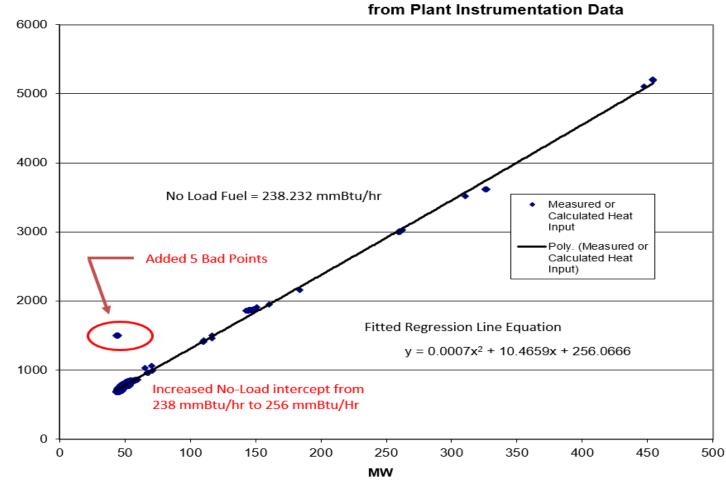
 Manual 15 Attachment H Section B.4 provides a similar example for a 2x1 combined cycle with duct firing


- Cost Offers always start with a heat input curve
- When developing heat input curves
 - Try to maximize the number of data points
 - Use steady state operation data
 - Remove obvious bad data

mmBtu/hr

Heat Input Curve with Limited Data

Typical Natural Gas Heat Input Output Curve for 550 MW Steam Unit from Plant Instrumentation Data



mmBtu/hr

Example of Impact of Bad Data

Typical Natural Gas Heat Input Output Curve for 550 MW Steam Unit from Plant Instrumentation Data

