

# Stability Project Beneficiaries Alternative Comparison



www.pjm.com

PJM©2017



Background

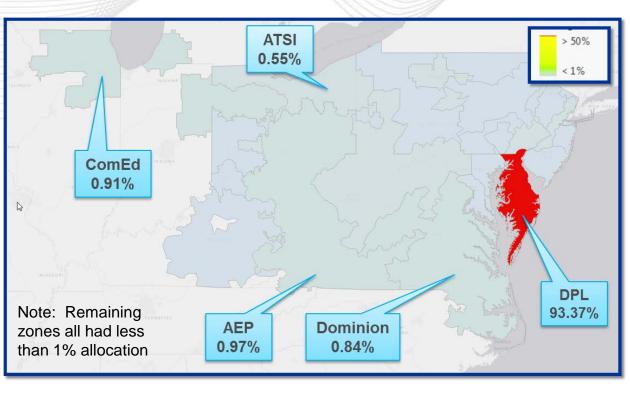
- In April of 2017 the PJM Board of Managers lifted the suspension of the Artificial Island project
- The Board also directed PJM to provide information to states and stakeholders on methods to identify beneficiaries of stability projects
- Section 205 filing rights over rates and cost allocation rest with the PJM transmission owners



- Broad range of approaches evaluated including:
  - Power system analytical approaches
  - LMP based approaches (e.g. determine load payment impact of the unstable unit(s))
  - Rule-based approaches (e.g. allocate to the zone unstable unit is located)
- Analytical approaches meriting further consideration
  - Existing solution based d-fax method
  - Stability Interface d-fax method
  - Stability Deviation method



#### Description


- Determine DFAX on new upgrade from all PJM generation to each zone's load.
- Determine zonal MW impacts by multiplying DFAX by peak load for each zone.
- Weight zonal MW impacts to account for directional usage of new upgrade from production cost simulation.
- Use the directionally weighted zonal loads as the basis for allocation.



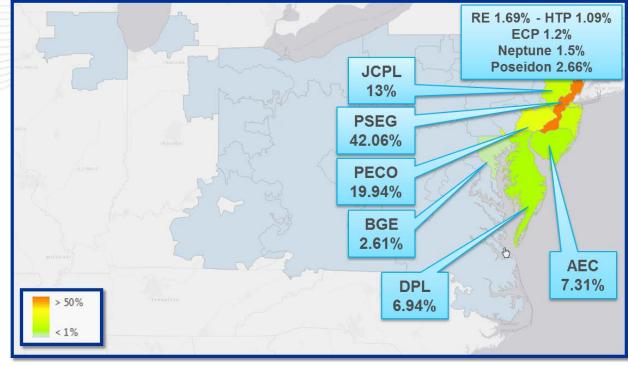
- Can be consistently applied for all RTEP upgrades.
- Generally provides reasonable allocations.
- Easy to implement.

#### Disadvantages

• May not provide reasonable allocations for stability driven upgrades.






#### Description

- Develop a closed interface that surrounds the generators with stability issues.
- Determine the DFAX for each transmission facility that comprises the interface in the same manner as the existing solution-based DFAX is calculated.
  - Ignore DFAX values that are not in the same direction as the predominate hourly usage.
- Multiply the DFAX by the load of each zone.
- For each zone sum the MW impacts for each line.
- Use the total MW impacts for each zone as the basis for the allocation.

### Advantages

- Consistent with the existing solution-based DFAX cost allocation methodology.
- Easy to implement.

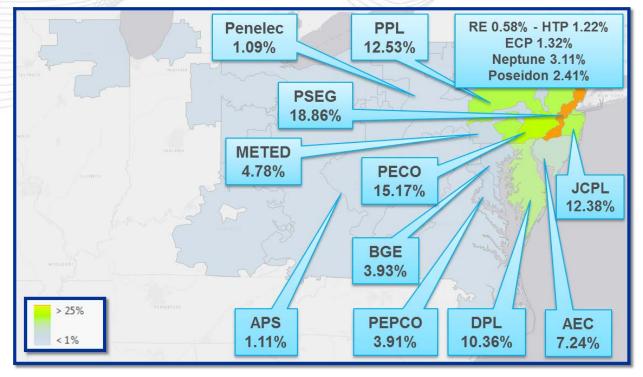
### Stability Interface DFAX Method



Disadvantages

Need to develop an interface, which could be viewed as subjective

### **Stability Deviation Method**


## **⊅**∕pjm

### Description

- Perform a transient stability study for the worst fault conditions and monitor the angle deviation at each PJM load bus. Ignore load buses with angle deviations less than 25% of the load bus with the largest angle deviation.
- Multiply the angle deviation at each load bus by the MW load at the bus and sum these load-weighted angle deviations for each zone.
- Use the total load-weighted angle deviations for each zone as the basis for the cost allocation.
- For each worst fault condition, perform a separate cost allocation and take the average of the allocations.

Advantages

• Based on stability simulations.



### Disadvantages

- Labor and time intensive.
- Cutoff based on engineering judgment; cutoff may not be appropriate for all stability issues.

### **Cost Allocation Approaches**

| Zone     | Existing Method | Stability Interface DFAX Method | Stability Deviation Method 25% Cutoff |
|----------|-----------------|---------------------------------|---------------------------------------|
| AEC      | 0.12%           | 7.31%                           | 7.24%                                 |
| AEP      | 0.97%           | 0.00%                           | 0.00%                                 |
| APS      | 0.38%           | 0.00%                           | 1.11%                                 |
| ATSI     | 0.55%           | 0.00%                           | 0.00%                                 |
| BGE      | 0.28%           | 2.61%                           | 3.93%                                 |
| COMED    | 0.91%           | 0.00%                           | 0.00%                                 |
| DAYTON   | 0.14%           | 0.00%                           | 0.00%                                 |
| DEOK     | 0.23%           | 0.00%                           | 0.00%                                 |
| DL       | 0.12%           | 0.00%                           | 0.00%                                 |
| DPL      | 93.37%          | 6.94%                           | 10.36%                                |
| DVP      | 0.84%           | 0.00%                           | 0.00%                                 |
| ECP      | 0.01%           | 1.20%                           | 1.32%                                 |
| EKPC     | 0.12%           | 0.00%                           | 0.00%                                 |
| HTP      | 0.01%           | 1.09%                           | 1.22%                                 |
| JCPL     | 0.27%           | 13.00%                          | 12.38%                                |
| ME       | 0.13%           | 0.00%                           | 4.78%                                 |
| NEPTUNE  | 0.03%           | 1.50%                           | 3.11%                                 |
| PECO     | 0.36%           | 19.94%                          | 15.17%                                |
| PENELEC  | 0.12%           | 0.00%                           | 1.09%                                 |
| PEPCO    | 0.28%           | 0.00%                           | 3.91%                                 |
| POSEIDON | 0.00%           | 2.66%                           | 2.41%                                 |
| PPL      | 0.30%           | 0.00%                           | 12.53%                                |
| PSEG     | 0.42%           | 42.06%                          | 18.86%                                |
| RE       | 0.02%           | 1.69%                           | 0.58%                                 |
| TOTAL    | 100.00%         | 100.00%                         | 100.00%                               |

**pjm** 

**J**pjm





www.pjm.com

PJM©2017