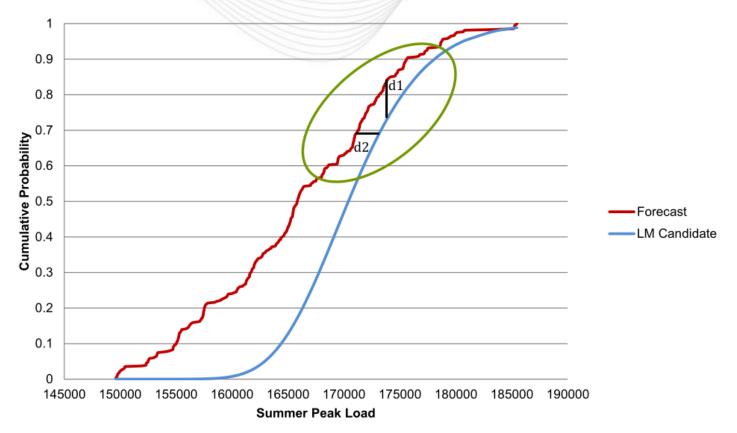


PJM Load Model Selection for 2022 Reserve Requirement Study (RRS)

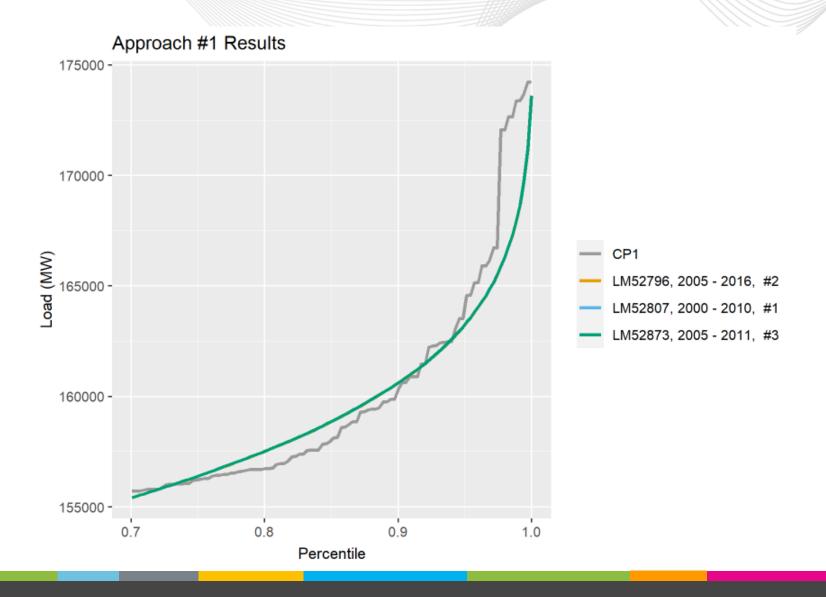
Patricio Rocha Garrido Resource Adequacy Planning Planning Committee August 9, 2022



- The Load Model Selection analysis is performed due to the fact that the Coincident Peak distributions from the PJM Load Forecast cannot be used directly in PRISM
- The analysis is based on method approved at June 9, 2016 PC meeting (Appendix V in 2016 RRS Assumptions Letter)
 - Selected Load Model should be a good match of CP1 distribution from PJM load Forecast
 - Consideration of historical PJM / World load diversity
- This year the analysis is based on the 2022 Load Forecast Report. Focus is on 2026/27 Delivery Year.

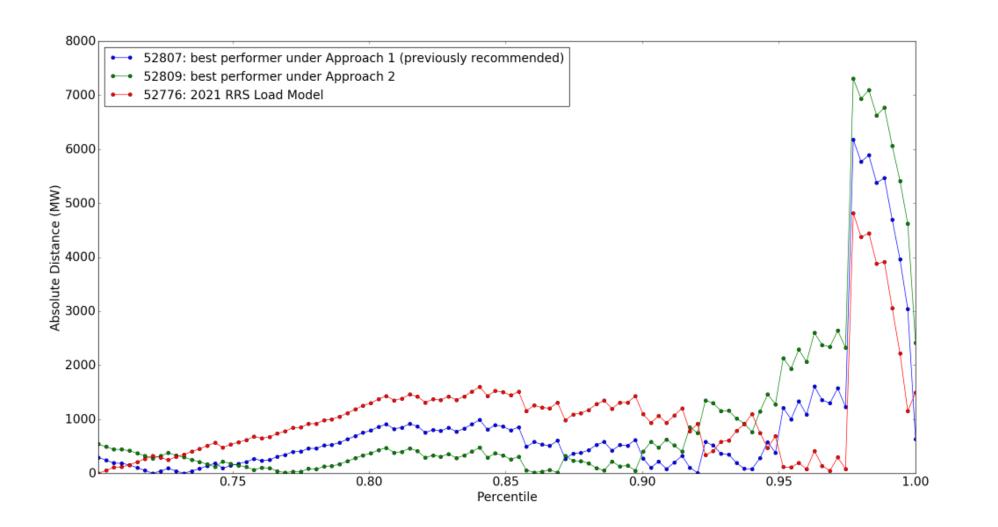
Load Model Candidate vs CP1 from Load Forecast

Peak Day (CP1) Cumulative Distribution



- A total of 136 Load Models are examined
 - Ranging from a 22-year Load Model (i.e. calculated using data from a 22 year period) to several 7-year Load Models
 - Load Models built with less than 7 years of data are not considered

Approach $1 - 70^{th}$ percentile and above


Approach $2 - 70^{\text{th}}$ percentile and above

Approach #2 Results 1.0 -0.9 -CP1 Percentile LM52809, 2002 - 2012, #1 LM52825, 2002 - 2011, #3 LM52870, 2002 - 2008, #2 0.8 -0.7 -155000 160000 165000 170000 175000 Load (MW)

- At the July PC, PJM had shortlisted two load models as the main 2022 RRS LM candidates
 - 52807: 2000-2010 (best performer under Approach 1)
 - 52809: 2002-2012 (best performer under Approach 2)
- Furthermore, PJM recommended and the RAAS endorsed the recommendation of LM 52807: 2000-2010, the top ranked load model under Approach 1
- Further analysis of the results under Approach 1 has caused PJM to modify its recommendation

Approach 1 point-to-point distance in upper 30th percentile of CP1 distribution

Distances in the extreme upper portion of distribution distort the total distance calculation and therefore, the ranking of load models

- Given the issue with Approach 1, PJM has decided to rely on the results from Approach 2 to issue a new recommendation
- Load Model Choices
 - 52809: 2002-2012 (Ranked #1 Approach 2)
 - 52870: 2002-2008 (Ranked #2 Approach 2)
 - 52825: 2002-2011 (Ranked #3 Approach 2)
- The above selected load models are the top 3 performers in Approach 2
- As a side note, last year's selected load model (2001-2013) is not one of the choices above

World Load Models

- To analyze PJM/World peak load diversity, World Load Models were created using the PLOTS program, observing the same historical time periods
 - Uses historical coincident peak pattern
 - World defined as MISO, NY, TVA, and VACAR.

LM #52809 (2002-2012) - PJM vs World Assessment

		PJM RTO LM #52809 11 Yr Load Model - 2002 - 2012	World Region LM #52897
 Month	WK#	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8419	0.8870
June	6	0.8930	0.9332
June	7	0.9121	0.9562
 July	8	0.9290	0.9406
July	9	0.9415	0.9534
July	10	1.0000	1.0000
 July	11	0.9677	0.9745
 August	12	0.9650	0.9919
August	13	0.9045	0.9493
August	14	0.8502	0.8873
 August	15	0.8043	0.8670

LM #52870 (2002-2008) - PJM vs World Assessment

		PJM RTO LM #52870 7 Yr Load Model - 2002 - 2008	World Region LM #52903
Month	WK #	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8367	0.8835
June	6	0.8593	0.9112
June	7	0.9121	0.9562
July	8	0.8779	0.9136
July	9	0.9342	0.9527
July	10	1.0000	1.0000
July	11	0.9642	0.9741
August	12	0.9650	0.9919
August	13	0.9092	0.9468
August	14	0.8564	0.8896
August	15	0.8444	0.8971

LM #52825 (2002-2011) - PJM vs World Assessment

		PJM RTO LM #52825 10 Yr Load Model - 2002 - 2011	World Region LM #52904
Month	WK #	Per-Unitized Peak	Per-Unitized Peak
June	5	0.8298	0.9002
June	6	0.8911	0.9339
June	7	0.9121	0.9562
July	8	0.9147	0.9105
July	9	0.9402	0.9538
July	10	1.0000	1.0000
July	11	0.9648	0.9737
August	12	0.9650	0.9919
August	13	0.9066	0.9469
August	14	0.8656	0.9102
August	15	0.8054	0.8989

- All selected load models have PJM peaking on the same week as the World
- Load Model #52809: 2002-2012 is the top performer under Approach 2 and includes more historical data

"pjm"

Historical Peak Load Coincidence PJM / World

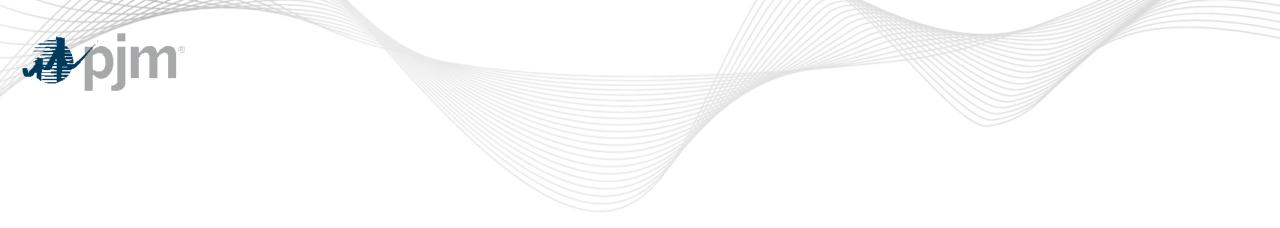
Year	PJM Peak - Actual Date	World Peak - Actual Date	Peak Coincidence?
1998	21-Jul-98	21-Jul-98	Yes
1999	30-Jul-99	28-Jul-99	No
2000	9-Aug-00	31-Aug-00	No
2001	9-Aug-01	8-Aug-01	No
2002	1-Aug-02	1-Aug-02	Yes
2003	21-Aug-03	14-Aug-03	No
2004	3-Aug-04	2-Aug-04	No
2005	26-Jul-05	25-Jul-05	No
2006	2-Aug-06	1-Aug-06	No
2007	8-Aug-07	8-Aug-07	Yes
2008	9-Jun-08	21-Jul-08	No
2009	10-Aug-09	10-Aug-09	Yes
2010	7-Jul-10	4-Aug-10	No
2011	21-Jul-11	20-Jul-11	No
2012	17-Jul-12	17-Jul-12	Yes
2013	18-Jul-13	18-Jul-13	Yes
2014	7-Jan-14	7-Jan-14	Yes
2015	28-Jul-15	28-Jul-15	Yes
2016	11-Aug-16	22-Jul-16	No
2017	19-Jul-17	20-Jul-17	No
2018	28-Aug-18	29-Jun-18	No
2019	19-Jul-19	19-Jul-19	Yes
2020	20-Jul-20	20-Jul-20	Yes

In the last 23 years, PJM and the World **have not peaked** on the same day 13 times.

LM #52809 (2002-2012) - Switching of World peak week

		PJM RTO LM #52809 11 Yr Load Model - 2002 - 2012	World Region LM #52897
Month	WK#	Per-Unitized Peak	Per-Unitized Peak
July	8	0.9290	0.9406
July	9	0.9415	0.9534
July	10	1.0000	0.9745
July	11	0.9677	1.0000

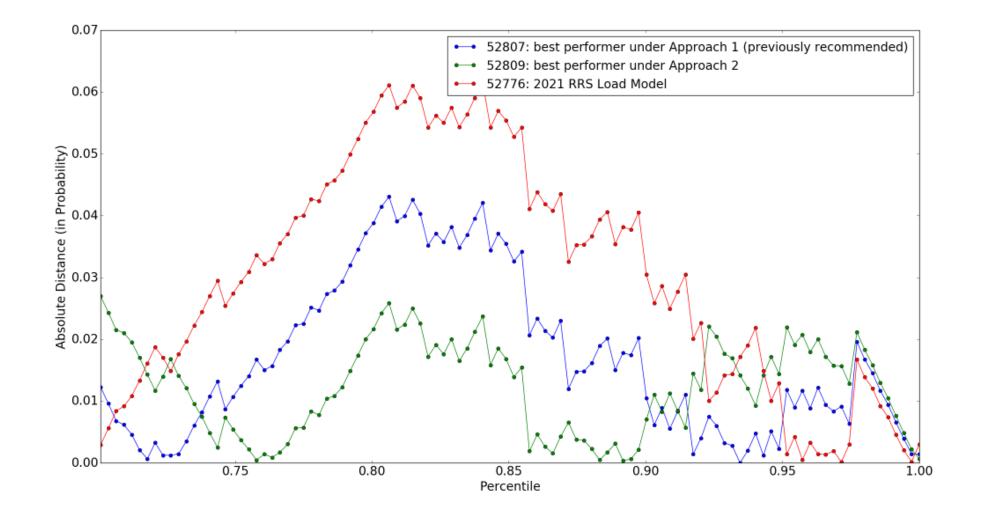
- PJM recommendation to PC on selection of historical time period for load model:
 - Use 11yr (2002-2012, #52809) Load Model for 2022 RRS Base Case and switch World peak to a different July week so that PJM and World peak in the same month but not in the same week.
 - Switch in World peak week is performed to match historical diversity observed between PJM and World



SME/Presenter:

Patricio Rocha-Garrido Patricio.Rocha-Garrido@pjm.com

PJM Load Model Selection for 2022 Reserve Requirement Study (RRS) Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com



Appendix

Approach 2 point-to-point distance in upper 30th percentile of CP1 distribution

- Approach 2 provides a more accurate representation of the difference between the LM candidates and the CP1 distribution, particularly in the extreme upper portion of the distribution.
 - Approach 2 relies on an analytical method that provides an accurate and precise answer to the question: what percentile of LM candidate X does a CP1 load value equal to 168,000 MW represent?
 - Approach 1, on the other hand, would require a significantly large number of Monte Carlo runs to accurately answer the question: what MW value produced by LM candidate X is representative of a 99.7150997 percentile (note that all the decimal points matter in the percentiles located at the extreme portion of the distribution)?