

We need to GET the most out of the grid we have

GETs are gaining widespread attention and interest given today's capacity-constrained grid

In the past year, GETs have risen in prominence as quick, cost-effective transmission tools that can help us meet the growing demand for electricity:

- FERC Order 2023 requires consideration of alternative transmission technologies (including some GETs) in interconnection studies
- Federal funding has supported GETs projects testing novel applications of the technologies
- Half a dozen states have introduced or passed legislation to encourage GETs deployment
- A growing number of **utilities** are pursuing GETs to meet transmission needs

But barriers to GETs adoption remain

GETs evaluation is not yet standardized and a lack of incentives impede their scaled deployment

Many utilities still lack **experience and familiarity** with these technologies and the range of use cases they may be suited for

GETs must be **incorporated into transmission models** and studies in order to support their routine evaluation in transmission planning processes

Cost-of-service regulation can deter utilities from deploying low-Cap Ex, efficiencyenhancing tools like GETs, creating a need for **better aligned incentives**

RMI released a new study on GETs as a way to accelerate new generator interconnection

GETs could enable 6.6 GW of new clean resources to come online by 2027

Each GET was assessed individually and in combination

This amounts to ~5% of all queued generation analyzed

RMI Graphics. Source: Quanta analysis

RMI – Energy. Transformed.

GETs provide dramatic cost savings for developers compared to default network upgrades

GETs are \$272-523M cheaper than traditional network upgrades

These technologies should be evaluated as a matter of course in grid operator interconnection studies.

Until the regulatory framework is in place to enable that, **developers can request GETs consideration for their projects**, as described in a case study in our report.

RMI Graphic. Source: Quanta analysis

GETs drive lower electricity costs for consumers across PJM

Once online, production cost savings from GETs + new generation can total \$1B per year

These savings are driven by both:

- Lower operating expenses of the new renewable resources displacing fossil-fuel generation, and
- Existing renewable generation benefitting from reduced congestion due to GETs

CO2 emissions are reduced **3.5% in 2027**, avoiding 12 million tons of CO_2e

RMI Graphic. Source: Quanta analysis

We make the following recommendations to spur commercialization of GETs

- PJM should institute robust evaluation of GETs across its interconnection and transmission planning practices
- PJM should ensure its staff has the requisite training and modeling tools

Transmission owners

- Transmission owners should build their internal capacity on GETs through studies and deployments
- Forums like the FSIG GETs User Group are a great venue to support resource sharing

Developers

Developers should propose and support GETs evaluation as network upgrades for their interconnection projects wherever applicable

Regulators

- State regulators should provide oversight and quidance to spur GETs adoption by their jurisdictional utilities
- FERC should take additional steps to provide a comprehensive national regulatory framework that supports **GETs** adoption

RMI - Energy. Transformed.

Thank you

RMI team

Katie Siegner Manager Carbon-free Electricity ksiegner@rmi.org

Sarah Toth, PhD Senior Associate Carbon-free Electricity stoth@rmi.org

Chaz Teplin, PhD Principal Carbon-free Electricity

Appendix

Grid Enhancing Technologies (GETs) At a Glance

Dynamic Line Ratings

Adjusting the carrying capacity of transmission lines based on real-time measurement of ambient conditions

Transit analogy: real-time adjusted speed limits

Advanced Power Flow Controls

Hardware solutions that push power away from lines with capacity constraints and pull power to lines with spare capacity

Transit analogy: railroad switching stations that direct trains to free tracks

Topology Optimization

Software solutions that automatically route power flows around congested areas

Transit analogy: re-routing drivers around traffic

Our rigorous analysis emulates PJM's own interconnection study methodology

Scope

3 types of GETs:

Dynamic Line Ratings (DLR) Power Flow Controls (PFCs) Topology Optimization (TO)

5 states:

Pennsylvania, Ohio, Illinois, Indiana, and Virginia

3 future years: 2026, 2028, and 2030

3 grid conditions: Summer peak, winter, and light-load

All queued generation and GETs were incorporated into a power flow model + contingency analysis to assess thermal overload violations

Cost and emissions benefits from queued projects that, with GETs, could feasibly be operable in PJM by 2026 were quantified

Each GET was incorporated into the power flow modeling with a unique method informed by deep-dive analysis

Our modeling

A 10% uprate to represent DLR was applied to all overloads during summer peak

A python script was utilized to place and select the number of PFCs in the study

TO was given credit for overloads arising from P1, P2, P4, and P7 contingencies

Deep-dive analysis

A deep-dive analysis of DLR throughout the year at multiple locations revealed an average 17% uprate in summer conditions

A Python script provided by the vendor was utilized in conjunction with PSSE to automate the modeling; PFCs are only applicable in meshed grids A deep-dive analysis of overload cases revealed TO is best-suited to address the above contingency conditions in meshed grids

We designed this to be a replicable approach that could help grid operators and utilities incorporate GETs into their own grid planning models.

RMI – Energy. Transformed.

These fast-to-deploy, flexible transmission tools can accelerate interconnection and deliver substantial savings

GETs are applicable in a planning paradigm

 Some GETs are viewed today as only operational tools; this fails to recognize their full potential

GETs can be modeled and deployed reliably

• Quanta and GETs vendors pressure-tested GETs application to ensure no adverse impacts elsewhere in the system while respecting all reliability criteria

GETs are complementary transmission solutions

 GETs can work well in combination (particularly DLR, which can be effectively paired with PFCs or TO) and serve as bridge solutions to longer-term transmission upgrades or as part of a broader transmission project