# **World Leader in OT**

More Users, More Solutions, More Projects Delivered with 100% Customer Satisfaction

osii.com



### **OSI Overview**

- Leading supplier of Operation Technology (OT) solutions
- Founded in 1992, acquired by Emerson in 2020
- Headquartered in Minneapolis, MN
- All USA developed Technology
- Over 600 Systems in Operation
- Strong in Cyber Security and NERC CIP





### **Served Markets:**

- Electricity
- Generation
- Transmission
- Distribution

- Renewables
- Micro-grids
- Oil and Gas
- Water





# **Technology Needs of DER in Grid Management**

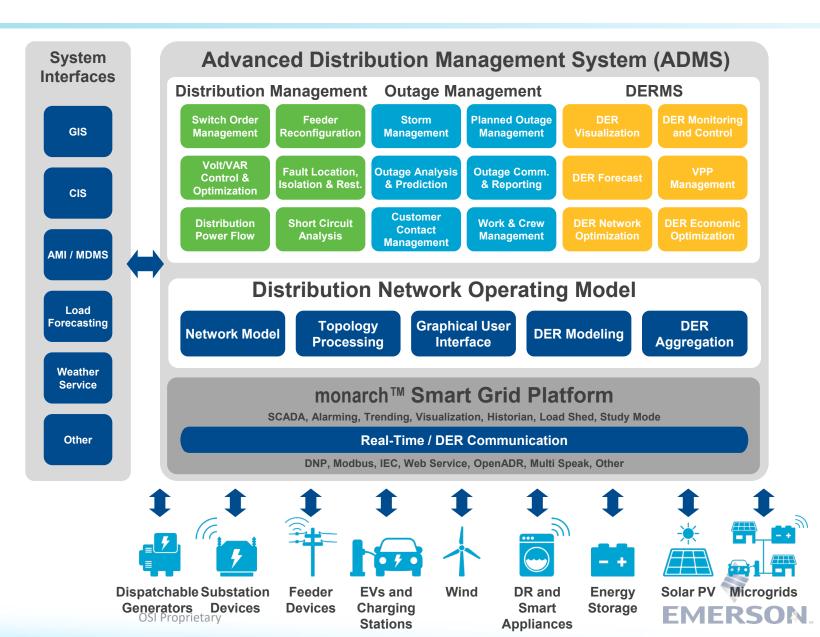
### Increased System Reliability

- Provide real-time situational awareness of network conditions from all grid devices including DER
- Alarm and respond to avoid adverse grid conditions (overloads, outages, etc.)
- Ensure balanced network with orchestrated management of all distribution grid resources, both retail and wholesale (Powerflow, Volt/Var Optimization, etc.)

### Enhanced Visibility and Operational Safety

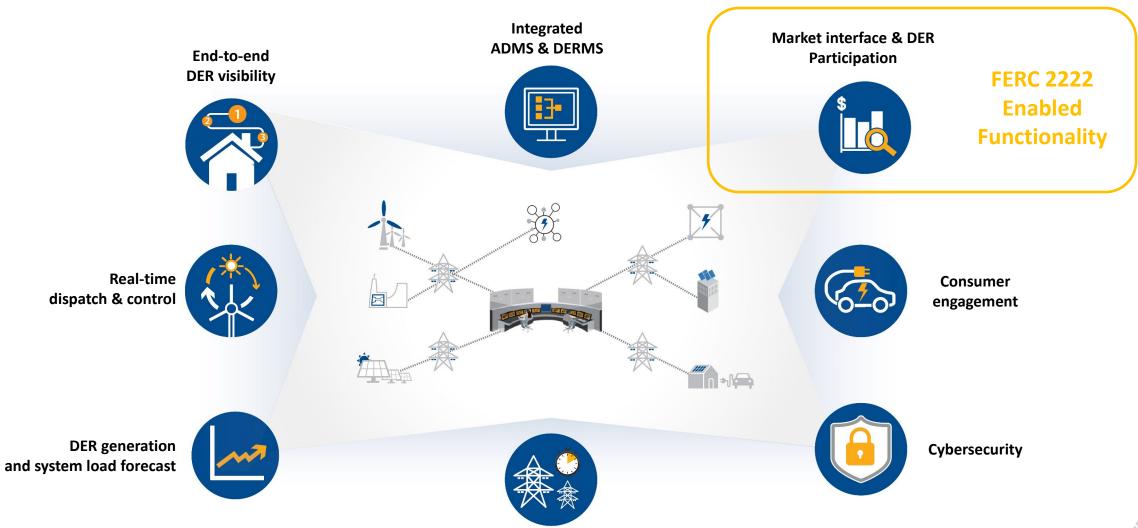
- Improved network visibility of distribution real-time conditions for operators and field crews (can include over 1,000 people)
- Safely control all grid distribution equipment in a coordinated way
- Reduce time to analyze and respond to network conditions (i.e. improving outage restoration times)

### Focus on Customer Experience


- Provide accurate network information in real-time (i.e. outage restoration time)
- Smarter grid management to avoid adverse grid conditions (i.e. brown outs)
- Enablement of state jurisdictional approved DER programs






### **Building a Comprehensive DER Management System (DERMS)**

- Connectivity to all end-devices in real-time (SCADA, DER, etc.)
- Significant software functionality and configuration of data
- Multiple System Interfaces
- Cyber Security and networking considerations
- Disaster Recovery/Back-up contingency planning





## **Solving Challenges Through Distributed Energy Management**



**Scheduling & curtailment** 





# **OSI DERMS Project Case Studies**





### Production System ADMS + DERMS Primary Use Cases:

- Real-time solar estimation and solar PV overload analysis
- System-wide visibility of distributed solar growth
- Smart inverter voltage response coordination with traditional voltage control devices
- Evaluate system performance under different solar penetration levels and weather scenarios

**DER:** Solar PV

Generation: >1000 MW



An Exelon Company

#### **Commonwealth Edison Pilot**

#### **Production System DERMS**

#### **Primary Use Cases:**

- Forecast substation transformer overloading from excessive generation
- Ability to intelligently curtail solar during overloads
- Ability to interface to real-time digital simulator for lab verification

**DER Type:** Solar, Wind

Generation: >100MW over 3 feeders



#### **Sacramento Municipal Utility District**

### Production System ADMS + DERMS Primary Use Cases:

- Real-time visibility, forecasting and control of all DER's
- Fully integrated and managed within the ADMS
- Integrate with DER production smart meters
- Ability to use DERs in real-time to solve network violations
- Schedule DER power and control modes
- Schedule Virtual Power Plants of DERs in CAISO EIM market
- Dispatch DERs to minimize operating costs

**DER Type:** Solar PV, EVs, Storage, spinning generation, DR

Generation: >300 MW



#### **Saint John Energy**

### Production System ADMS + DERMS Primary Use Cases:

- DER Forecasting and Load Forecasting for optimal DER scheduling and dispatch
- Monthly peak load reduction to reduce demand charge
- Interface with 3rd party DR head-ends for peak load reduction
- Real-time network information incorporating DER into decisions
- DER dispatch strategies to provide optimal network benefits

DER Type: DR, solar PV, battery storage

Generation: >17 MW



#### **Portland General Electric**

#### Production System ADMS + DERMS Primary Use Cases:

- Real-time visibility, forecasting and control of all DER's
- Demand response scheduling and dispatch for Demand Reduction via Enbala
- Enable DER utilization and economic potential
- Integrate DER into real-time Distribution operations

**DER Type**: Battery, Solar, Wind, Demand Response, spinning generation

Generation: >3,902 MW



#### **Toronto Hydro**

### Production System DERMS

- Primary Use Cases:
- Accurate DER and load forecasts to inform dispatching decisions
- Coordinated DR Program and DER dispatch to reduce feeder demand
- Real-time network information incorporating DER into decisions
- DER dispatch strategies to provide optimal network benefits
- Integration with 3<sup>rd</sup> party D-SCADA and DMS

**DER Type:** DR, solar PV, storage, spinning generation, Industrial

Generation: >200 MW



# **Functionality Enabled with FERC 2222**

### **Grid Management**





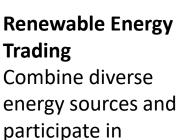


## Dispatch

Schedule flexible DER assets and manage them while distribution grid configuration and conditions change



Use DER to resolve adverse grid conditions (overloads, etc.) and ensure service reliability


**Ancillary Services** 

Enable coordination and balancing between Transmission and Distribution networks

**Balancing Services & Grid Stabilization** Increase/decrease

**System/Market Interaction** 

energy generation of manageable assets in real-time



energy markets





# **Software Approach for Enabling FERC 2222**

# Modelling & Aggregation

Forecast & Capacity Availability

Dispatch & Market Participation

# **Control & Optimization**

Verification & Reporting

- Ability to model diverse DERs & renewable generation assets, aggregate DERs and group logically
- Uses data profiles for individual DER and forecast/schedule functions to determine capacity
- Enable operators to schedule and forecast individual and aggregated DERs

- Evaluates available
   DER and dispatches
   based on grid
   optimization
- Allow utilities to aggregate DERs and offer in real-time or day-ahead markets
- Monitor and dispatch controls to generation resources; ability to disaggregate control to DER
- Determines optimal individual DER dispatch based on network constraints
- Near real-time performance assessment and realtime individual DER non-compliance reporting





# **Key Takeaways**

- Reliable and safe grid operations must be the utility #1 priority which requires holistic view of all grid activity including DER impact
- Utilities need real time visibility and control to DERs to ensure safe and reliable service
- Significant benefit to grid reliability will be enabled as DER is adopted and included in real-time grid management activities
- Software functionality to manage the electric grid is already complex, adding DER management and FERC 2222 capabilities requires even more centralized orchestration
- Success will also depend on ensuring harmonization with individual state public policy initiatives so utilities can continue implementing state programs and discharging any state required obligations





# Thank You!

Sally Jacquemin
Associate Vice President,
Distribution & Smart Grid Business Unit

Sally.Jacquemin@osii.com

#: 763.551.0559

