

Long-Term Regional Transmission Planning (LTRTP) Update

PJM Staff Long-Term Regional Transmission Planning Workshop Aug 22, 2023

Workshop 1 Recap

Goal and Actions

Goal: Analyze Long-Term Scenarios to (1) identify transmission needs driven by the changing *resource mix* and load growth and (2) implement reliable, efficient and proactive transmission solutions

Long-Term Planning Action: Identify and implement long-lead transmission solutions Near-Term Planning Action: Better inform near-term planning processes through robust transmission solutions

Workshop Focus

(1) Scenario based Reliability Planning

(2) Resource mix assumption updates

(3) Projected loads (electrification / data center)

(4) Capacity expansion process to develop resource mix for scenarios

Long-Term Scenario Development (Recap)

Sensitivities capture realistic ranges for selected inputs
Scenario assumptions and methods are transparent

Scenarios

0: *Near-Term* (5 Year RTEP)

1: Intermediate-Term (8 Year; for Near-Term solutions and timing of Long-Term needs)

2: Long-Term, Primary (15 Year; identify Long-Term needs)

3: Long-Term, Accelerated (20 Year)

Sensitivities

- PJM will also consider sensitivities covering plausible ranges of critical inputs to be determined in each long-term planning cycle
- Number of sensitivities should be limited depending on analysis' complexity

Scenario Building, Main Inputs

1.Load and Electrification (Data centers, Heating, EVs)

2.Policies (Federal and States policies affecting retirements and new builds)

3.Renewables' capacity factors

4.Fuel Prices

5.Discount Factor (for NPV)

6.Power system's initial state

7.Generation and storage candidates (Sites, assets characteristics and costs)

8.Resource Adequacy (Reliability Target and ELCC)

Scenario Building, Methods

- Capacity Expansion model
- Siting:
 - Use queue primarily and green field candidate sites as needed
 - Account for siting restrictions (e.g. local ordinances)
 - Prioritize sites based on
 - Interconnection headroom
 - Economics (e.g. fuel availability, renewables' potential)

Stakeholder Feedback on Workshop 1 Content

LTRTP Analysis Pillar - Reliability Model Building & Analysis

••Reliability analysis is the primary focus

Analysis

Key Updates To Long-Term Planning Process

- Extend two year cycle to three year cycle to account for additional scenarios, sensitivities and transmission needs
- Supplement 8 year power flow models with 15 year power flow models
 - 8 year power flow model will be used to perform both thermal and voltage analysis and will replace the 10 year model used for voltage analysis
 - 15 year model will be used to perform thermal analysis only
 - Primary scenario
 - Accelerated scenario (assume year 20 conditions occur in year 15)
 - Linear interpolation using year 5, 8 and 15 year thermal analysis to determine required in-service dates

Recommended Enhancements To Long-Term Planning Process

Reliability Model Building

- The LTRTP process will begin every three years in January
- During the first year of the three year cycle a set of assumptions for years 6-15 will be developed and intermediate-term (year 8) and long-term (year 15) power flow models will be built
 - Develop year 8 and 15 cases in parallel with year 5 cases after capacity expansion assumptions developed
 - Seek transmission solutions for less complex needs in the near-term18-month cycle window, and address remaining more complex needs in the long-term 36-month cycle window

Reliability Model Building

- Three sets of base cases will be created:
 - Year 8 Intermediate-Term: Purpose is to assist in determining required inservice dates of each component of LTRTP and to identify other intermediateterm (years 5-8) reliability needs including both thermal and voltage
 - Year 15 Long-Term
 - Primary: Purpose is to address long-term needs by identifying long-term solutions
 - Accelerated: Purpose is to help size the solutions driven by the primary scenario with consideration of possible acceleration of assumptions in years 9-15
- Three seasonal cases will be created:
 - Summer peak
 - Winter peak
 - Light load

- After the models are built, reliability studies will be performed in preparation for a competitive transmission solution window
 - Perform year 8 & 15 analysis
 - Determine required in-service dates using linear interpolation of year 5, 8 and 15 analysis results

Reliability Criteria Analysis For Years 8 & 15

- N-1, generator & load deliverability (years 8 & 15)
 - Monitor same facilities considered in year 5 analysis
 - Ignore terminal equipment limitations
 - Contingencies
 - Singles & Towers (Year 8 and 15)
 - Stuck breakers and bus faults (Year 8 only)
 - Voltage analysis (Year 8 only)
- N-1-1 (year 8 only)
 - Thermal & voltage analysis focusing primarily on 230 kV+

Required In-Service Date For Years 6-15

- Replace DFAX extrapolation with linear interpolation of thermal results from year 5, 8 and 15 analyses to determine required inservice dates
 - Use year 5 and year 8 thermal loadings from generator deliverability, load deliverability and N-1-1 to determine year 5-8 required in-service dates
 - Use year 8 and year 15 thermal loadings from generator and load deliverability to determine year 8-15 required in-service date

Line A-B loading increase from Years 5 through Year 15 using linear interpolation of Year 5, 8 and 15 loadings

	Rating											
Line	(MVA)	Yr 5	Yr 6	Yr 7	Yr 8	Yr 9	Yr 10	Yr 11	Yr 12	Yr 13	Yr 14	Yr 15
A-B	3500	98.0%	98.3%	98.6%	98.9%	99.2%	99.5%	99.8%	100.1%	100.4%	100.7%	101.0%

LTRTP Needs Identification

- Once the reliability analysis has been completed, the potential long-lead time transmission needs will either be submitted into the near-term RTEP window or into the long-term LTRTP window, depending on the nature of the identified transmission needs.
- For years 6-15, PJM will request window participants to address transmission needs that have transmission solutions with a lead time beyond 5 years.

Mid-Cycle Updates

- PJM will refresh the capacity expansion assumptions for the year 8 case annually in time to be input to the near-term cycle case building process
- There will be no mid-cycle update for the year 15 case

Solution Identification and Approval

•• Transmission solutions must address reliability needs •• Secondary benefits inform project selection and portfolio savings

- Long-lead 230kV and Up (> 5 years from need identification)
- Address reliability needs
- Action is needed to meet required in-service date
- ... Or sufficiently large benefits to warrant acceleration

Project Selection Steps

- 1. Projects must address reliability needs
- 2. Feasibility assessment cost and constructability analyses
- 3. Do-no-harm analysis
- 4. Secondary benefits to select among alternative reliability projects
 - Benefits are comprehensive
 - Robustness to other scenarios and sensitivities is also considered

 Benefit metrics identify long-lead transmission solutions that maintain reliability at the lowest possible system cost

• Alternative benefit metrics are *comprehensive* load payments + enhanced reliability benefits

 Δ Load Payments = Δ System Costs + Δ Profits

Benefit Metrics - Approach

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Capacity Expansion, Reliability, Production Cost Models

System Cost + Enhanced Reliability

Latest Approved Near-Term RTEP

Latest Approved Long-Term RTEP

Current Cycle Long-Term RTEP

Capacity Exp<mark>ansio</mark>n, Reliability, Production Cost Models

System Cost + Enhanced Reliability

Δ Benefits

TEAC Discussions and Board Approval (As Now)

- Once the window closes:
 - PJM staff reviews project proposals
 - PJM reports progress to TEAC and produces LTRTP reports for selected projects (1st and 2nd reads)
 - Actionable projects are brought to PJM's Board for approval

Stakeholder Feedback on Workshop 2 Content

- Recap LTRTP materials
- Solicit feedback
- Discuss areas for manual changes

Facilitator: Bhavana Keshavamurthy, <u>bhavana.murthy@pjm.com</u>

Secretary: Julia Spatafore, julia.spatafore@pjm.com

SME/Presenters:

Asanga Perera, <u>Asanga.Perera@pjm.com</u> Michael Herman, <u>Michael.Herman@pjm.com</u> Jonathan Kern, <u>Jonathan.Kern@pjm.com</u> Emmanuele Bobbio, <u>Emmanuele.Bobbio@pjm.com</u> Long Term Regional Transmission Planning Update

Contact Information

Member Hotline (610) 666 – 8980 (866) 400 – 8980 custsvc@pjm.com

Appendix

Why PJM is updating LTRTP

- Primary motivation is ensuring a reliable transition
 - Large-scale changes in the resource mix and load are expected in the coming decades. PJM needs to strengthen modeling assumptions and scenario building to identify and implement long-term transmission solutions and preserve reliability at the lowest possible system cost
- FERC is proposing Long Term Planning Rulemaking
 - Improved modeling assumptions and scenario building would be helpful for a possible compliance filing

Revision History

Version No.	Date	Description
1	8/17/2023	Original slides posted

